PHYSICAL REVIEW E 70, 036615(2004)

Nonequilibrium electromagnetics: Local and macroscopic fields and constitutive relationships
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We study the electrodynamics of materials using a Liouville-Hamiltonian-based statistical-mechanical
theory. Our goal is to develop electrodynamics from an ensemble-average viewpoint that is valid for micro-
scopic and nonequilibrium systems at molecular to submolecular scales. This approach is not based on a Taylor
series expansion of the charge density to obtain the multipoles. Instead, expressions of the molecular multi-
poles are used in an inverse problem to obtain the averaging statistical-density function that is used to obtain
the macroscopic fields. The advantages of this method are that the averaging function is constructed in a
self-consistent manner and the molecules can either be treated as point multipoles or contain more microstruc-
ture. Expressions for the local and macroscopic fields are obtained, and evolution equations for the constitutive
parameters are developed. We derive equations for the local field as functions of the applied, polarization,
magnetization, strain density, and macroscopic fields.
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I. INTRODUCTION ing evolution equations for these quantities determines the
) ) o unknowns, which are the local fields and macroscopic polar-
The goal of this paper is to study electrodynamics in maization, magnetization, and strain density. The macroscopic
terials using a Liouville-Hamiltonian-based projection- electric and magnetic fields are also explicitly defined. The
operator statistical-mechanical theory. The motivation formethod is self-consistent since the relevant statistical density
writing this paper evolved from a need to apply electromag-averaging function is a function of the macroscopic observ-
netics at the molecular and submolecular scales, in order tables and therefore the length scales are intrinsically incor-
relate single-molecule measurements to theory. The impoporated.
tant features of our model include a nonequilibrium The projection-operator approach produces expressions
statistical-mechanical analysis and definition of the macrofor the relevant quantities, subject to constraints, by decom-
scopic and local fields, the self-consistent construction of aifposing the statistical density function into relevant and non-
averaging function for deriving the macroscopic field from relevant components, so that the macrovariables are decom-
the microscopic field, definitions of the susceptibilities, and aP0sed into relevantreversiblg and irrelevantdissipative or
comprehensive development of the constitutive relationship§Ntropy producingcomponents. In the problem at hand the
for the current density, polarization, magnetization, and@/évant quantities are the macroscopic electromagnetic
strain density. Nonequilibrium aspects  include time-fields, the polarization and magnetization, the strain density,
dependent fields and variable temperatures. and the internal-energy density. This allows concentration on

Previous pioneering microscopic electromagnetic theoried'€ "€lévant variables while at the same time not discarding
developed by Mazur and Nijboe], Robinson[2], and important information in the dissipative parts. The relevant

: - . density function used in the projection-operator technique
Jacksor(3] gxpand the Chafge density and the coefficients Inallowsya systematic and consigterjn deveIoF:)ment of the r?lac-
the expansion are the multipole moments. The averaged

. . . - m?(')scopic and local electromagnetic fields and constitutive re-
lecular multipoles are treated as point multipoles. This Workﬁationships. The projection-operator theory we use in this

well down to near the molecular level, but breaks down ai : f .
’ . aper is that developed by Robertgdh In a linear approxi-
the molecular to submolecular level. Using Robertson'tp b P y d bp

h 4 ) bl d ine th Smation the resulting equations satisfy the time-invariance
theory[4], we use an inverse problem to determine the gen;,,q causality requirements of linear systems theory.

eralized canonical(relevanj statistical-density averaging Theoretical analysis of the effective local fields is impor-

function from knowledge of the expected values of the POy, i gielectric modeling of single-molecule measurements
larization, magnetization, internal-energy density,

: N . an_d Stralyng thin films. Since electrical measurements can now be
density. This is then us_ed in th(_e Robertson_ prc’Jea'on'performed to very small spatial resolutions, we require good
operator theoryf4] to derive constitutive evolution equa- 1 nqels of the macroscopic and local fields at all spatial lev-
tions. The method uses Lagrange multipliers that turn out tQ Thjs is particularly important since it has been found that
be local fields and inverse temperature. Evolution equat|ont=2e Lorentz theory of the local field is not always adequate

are also founq for the ma_lterial_ parameters. The closed set ®or predicting polarizabilitie$5,6]. Also, when solving Max-
coupled nonlinear equations includes equations for the e iiell's equations at the molecular level, definitions of the

pected values fpr t_he polarization_, magngetization, local fiel acroscopic field and constitutive relationships are impor-
and macroscopic fields, and strain density. The correspondz .

Much of the work performed in the past on local fields
has been for static fields. Mandel and Mazur developed a
*Electronic address: jjarvis@boulder.nist.gov static theory for the local field in terms of the polarization
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response of a many-body system using-aatrix formalism  the local field can become very large and hence there is a
[7]. Gubernatis extended th&-matrix formalism [8]. need for comprehensive field models.

Keller’s [9] review article on the local field used an electro-  In the literature of dielectric materials, a number of spe-

magnetic propagator approach. The work in this paper precific fields have been introduced to analyze polarization phe-
sents an approach different from Keller's in that we use e&nomena. The field acting on a nonpolar dielectric is com-

projection-operator approach. Kubo's linear-response theoronly called the internal field, whereas the field acting on a

has also been used for electromagnetic correlation StUdiﬁfermanent dipole moment is called the directing field. The

[10,11. Grandy has recently presented a theory of nonequigjitference between the internal field and directing fields is

librium processes based on maximum entropy with new inyhe averaged reaction field. The reaction field is the result of

sights into Liouville's equatior12]. a dipole polarizing its environment and does not directl
When electromagnetic fields are applied to a medium, th?nflugnce Ft)he orier?tation of permanent dipoles y

fields in the material are composed of the effects of both the In electrodynamics there have been many variations of

applied field and the particle back-reaction fields. For ex- bl d vol tri ; thod d to def
ample, when an applied electromagnetic field interacts with nsemble and volumetric averaging methods used 1o detine
e macroscopic field§1-3,7. In previous ensemble-

dielectric material, the macroscopic and local fields in the ; oo e
material are modified by surface-charge dipole-2veraging approaches an approximation to the full statistical

depolarization fields that oppose the applied field. When condensity function is used. In the most commonly used ap-
sidering time-dependent, high-frequency fields, this interacProaCh to microelectromagnetism, the first Ieyel of averaging
tion is more complex. In addition, there are the effects of theS the molecular moments to produce effective point multi-
internal energy on the resulting electromagnetic behaviofPoles. Then there is the averaging to produce the macro-
For example, depolarization, demagnetization, thermal exSCOPIC fields. Another type of averaging is for the effective
pansion, exchange, and anisotropy interactions can all infldocal field. Jackson uses a truncated averaging test function
ence the dipole orientations and therefore the fields. Usuall{? Proceed from the microscale to the macroscale figddis
these internal energy effects are modeled by an effective fielfOPINson and Mazur use ensemble averaging. In these
that modifies the applied field. In constitutive modeling for @PProaches the averaging function is never really explicitly
use in Maxwell's equations, our goal is to express the matedetermined or needed, but the function is assumed to vary in
rial properties in terms of the macroscopic field, not the ap& Smooth enough manner to allow a Taylor series expansion
plied or effective fields. of the macroscopic charge density to be performed. In our
The relationships between the applied, macroscopic, |oap.proach.the rele\{ant—density averaging functiqn is deter-
cal, and the microscopic fields are all important for constitu-Mined. It is a function of the macroscopic material proper-
tive modeling. The applied field originates from externalties, produces an averaging in a self-consistent manner, and
charges, whereas the macroscopic fields are averaged quaHlows the macroscopic and local fields to be defined in
tities. The macroscopic fields in Maxwell's equations are im-terms of the microscopic fields. _
plicitly defined through the constitutive relationships and This paper is an extension of our previous work, where
boundary conditions. The macroscopic field that satisfie/® developed constitutive relationships using the same
Maxwell's equations with appropriate boundary conditionsStatistical-mechanical theof4]. Here, we expand and sim-
and constitutive relationships is generally not the same as thlify the correlation functions and include stress-strain rela-
applied field. The local field is the averaged electromagneti¢ionships, develop expressions for the effective local fields,
field at a particle site due to both the applied field and theeXPress the polarization either as due to point multipoles or
fields from all of the other dipolefL1,13. The microscopic &S submolecular multipoles, and develop expressions for the
field represents the electromagnetic field at the level of aySusceptibilities. The inclusion of the stress and strain allows
eraging used. For example, if averaged at the moleculdf® coupling of the mechanical properties to the electrical
level, it is the molecular field, if averaging is carried out atProperties. We define the macroscopic fields in terms of a
the atomic level, it is the atomic field. relevant-density function, or quantum mechanically, the
Particles interact with the local electromagnetic field. The'€levant-density operator. In our approach the relevant-
spatial and temporal resolution contained in the macroscopigensity functionoperatoy is constructed in a self-consistent
variables is directly related to the spatial and temporal detaifashion from the material properties. The correlation func-
incorporated in the constitutive re'ationships_ tions are expressions of Current-curl’ent, Current'magnqn,
The formation of the local field is a very complex processPhonon-phonon, phonon-magnon, and magnon-magnon in-
whereby the applied field polarizes charge in a specific moléractions. In Sec. Ill we overview past work on the local
ecule. Then the molecule’s dipole field modifies the dipolefild. In Sec. IV we define the microscopic constitutive pa-
orientations of other molecules in close proximity, which Fameters. In Sec. V we present the time evolution of the
then reacts back to produce a correction to the molecule’§Onstitutive parameters and make various approximations. In
field. This process gets more complicated for time-dependert®C- VI we present derivations of the local fields, and then in
behavior. We define the local electromagnetic field as the>ec. VIl we discuss a definition of the displacement field.
effective, averaged field at a specific point in a material,
which is a function of both the applied and multipole fields Il. CONSTITUTIVE RELATIONS
in the media. The local field is related to the average macro-
scopic and microscopic fields in that it is a sum of the mac- In materials, Maxwell’'s equations are not complete until
roscopic field and effects of the near field. In ferroelectricitywe specify the constitutive relationships between the macro-
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scopic polarization, magnetization, and current density as B = uoH + ugM , (2
functions of the macroscopic electric and magnetic fields.

The relationship of the polarization, magnetization, and curand

rent density to the macroscopic electric, magnetic, and stress J=f(E,H), (3)

fields can be expressed &#,M ,J} — {E,H,2g}, where the ) ) ) L
double-headed arrow in this relation indicates that the rela\-’\’hermc IS a functlon (.)f.the electric and_magnetm fielas,
tionship could be nonlocal in time and space and the constl"—i,nd'“O are the permittivity and permeability of vacuum, and
tutive relation may be linear or nonlinear functions of theQ is the macroscopic quadrupole moment denstys the
driving fields[15,16. The constitutive relations contain the macroscopic dipole-moment density, wher@ais the effec-
contributions from both the electrical and the mechanicafive macroscopic polarization that includes the macroscopic
properties such as stress and strain and thermal propertigigadrupole-moment density contribution that is needed for
such as temperature. When used in Maxwell’s equations, th@figin invariance in Maxwell's equationid—3,16,2T.

displacement fieldD, the induction fieldB, and current den-

sity J must be expressed in terms of the macroscopic eleqy. | ocaL, MICROSCOPIC, AND MACROSCOPIC

tromagnetic fields. _ o FIELDS IN MATERIALS
The fields and material-related quantities in Maxwell's

equations must satisfy underlying symmetries. For example, In the literature, the effective local field is commonly
the dielectric polarization and electric fields are odd undefmodeled by the Lorentz field, which is defined as the field in
parity and even under time-reversal transformations. Th& cavity thatis carved out of a material around a specific site,
magnetization and induction fields are even under paritput excludes the field of the observation dipole. A well-
transformation and odd under time reversal. These symmetignown example of the relationship between the applied,
relationships place constraints on the nature of the allowefhacroscopic, and local fields is given by an analysis of the
constitutive relationships and require the constitutive relal-orentz spherical cavity in a static electric field. In this ex-
tions to manifest related symmetrigs, 17—23. The evolu- ample, the applied field, depolarization field, and macro-
tion equations for the constitutive relationships need to b&copic field are related by
causal and in linear approximations must satisfy time- 1
invariance properties. E=E,- —P. (4)

In any complex lossy system, there is conversion of en- 3eo
ergy from one form to another— for example, electromag-rqr 4 Lorentz sphere the local field is well known to be a

netic to thermal energy. The coupling of electromagneticsym of applied, depolarization, Lorentz, and atomic fields
fields to phonons— that is, lattice vibrations— is through therg 28

polariton quasiparticle. Magnetic coupling is through mag-
nons and spin waves. These effects are manifest in the con- Ep=Ea+* Egeport ELorentz* Eatom: (5)
stitutive relations and the resultant permittivity and perme-
ability.
It has been well established thatand B are the funda-
mental electromagnetic fields and have the origin of static 1
charge, moving charge, and spin. However, when free charge Ep=E+ S_GP- (6)
is present, there are both free and bound currents and we feel 0
it is more instructive to deal witk andH as fields that drive In the case of a sphere, the macroscopic field equals the
D and B. This approach separates the free-charge currergpplied field. Onsager generalized the Lorentz theory by dis-
density(J) from the bound-charge current dengitf?/t). In  tinguishing between the internal field that acts on induced
a statistical-mechanical approach the microscopic fields ardipoles and the directing field that acts on permanent dipoles
electrice, magnetich, polarizationp, quadrupole density, [11]. Some of the essential problems encountered in micro-
displacementl, magnetizationm, inductionb, strain density ~ scopic constitutive theory center around the local field. Note
&£, and current density. These all depend on the classical that there has been recent research that indicates that the
phase-space variables or quantum mechanically are operkorentz local field does not always lead to the correct polar-
tors. The corresponding macroscopic fielsH, P, D, M, izabilities in some materialgb].
B, £, andJ are averaged fields in the material and do not The field that polarizes a molecule is the local figld
depend on the phase-space variables, but rather only on tireaEp. In order to use this expression in Maxwell's equa-
macrovariables andt [26]. The macroscopic quantities are tions, the local field needs to be expressed in terms of the
related in an average sense to the microscopic quantitie®acroscopic field,=gE, whereg is some function. Calcu-
through the relevant density function. The macroscopic distation of this relationship is not always simple. Since the
placement and induction field® and B are related to the local field is related to the macroscopic field, the polarizabil-
macroscopic electric fiel& and magnetic fieldH, M, andP ities, permittivity, and permeability absorb parts of the local
by field— for examplep= aBE. The local field is composed of
the macroscopic field and a material-related field as in Eq.
_ . (6). Part of the local field is contributed by effects of external
D=gE+P-V -Q=¢E+P, 1) parameters such as thermal expansion and quantum effects.

For cubic lattices in a sphere, the applied field is related to
the macroscopic field and polarization by
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These additional degrees of freedom are contained in thecopic approach could be used by decomposing the molecule
internal energy. In Sec. VI we will generalize the local field momentg14]. The vectors j,=r;—r are from the center of

to include time-dependent behavior. mass of the moleculg, to the jth charge. Higher-order mo-
ments are defined in a similar fashion as in Jac8dnThe

n indicates thenth molecule and(n) indicates thgth charge

in the nth molecule at the center of massof the nth mol-
ecule. The sum in Eq7) is over the bound charge. The free

In this section we will define the microscopic polariza- charge need not be neutral as a whole and contributes to the

tion, magnetization, and strain density. Later we will usekinetic energy contained in the internal energy. The total di-
constraints on the theoretical expected values of the polariz&ole moment is calculated by integrating E@) over space.
tion, magnetization, strain density, and internal energy tolhe sign of the charge, is, for example, negative for elec-
build a relevant-density functiof#]. This density function is trons and positive for protons. The effectiywith quadru-
only part of the full statistical density function that describespole contribution microscopic polarization i3]

-body system completely. Using this formalism, exact -
the N-body sy pecy ’ P=2 pandr =r) = V -4, 9)

n

evolution equations are derived 8r M, and€&. This accom-

plishes an averaging that we feel is more self-consistent than

that used in most statistical-mechanical approaches becauggere

the relevant-density function, being the relevant contribution, - -

incorporates the exact values of the macroscopic polariza- G=2 §dlr —ry). (10)

tion, magnetization, strain density, and internal endgdgg]. "

The relevant-density function provides the required smoothNote that the polarization is not represented as an explicit

ing, and the expected values are determined througfunction of the electric field. This dependence enters through

Lagrange multipliers. However, the resultant equations ar¢he expectations with the relevant statistical function and

highly nonlinear. The Lagrange multipliers are functions ofLiouville’s equation. If higher-order moments need to be in-

the macroscopic polarization, magnetization, and internaleluded, then these moments can be inserted as additional

energy density, but not the phase-space variables. constraints. In the approach used in this paper we do not
In the approach of Mazur and Nijboer, Robinson, andexpand the charge density using a distribution function, but

Jackson[1-3] the charge density is expanded in a Taylor'srather use the moments to determine the distribution function

series and the multipole moments are identified. These maqor relevant density functionThe existence of the multipole

ments are calculated about each molecular center of massoments automatically assumes a degree of averaging. The

and are treated as point multipoles. This type of averagingxpected value of the polarizations={p)=Tr(pp), where

produces a homogenization to the molecular level. Of coursg is the full statistical-density functiofoperatoy that satis-

the homogenization can take place on smaller scales such @gs Liouville’s equation. In a classical analysis the trace is

atomic moments. Our approach differs from previous workdefined as an integration over phase-space variables. In clas-

in that we use the moments defined at a specific scale tsical mechanics the dynamical state is specified by the phase

determine the averaging function and then use this fUnCtiO@oordinateS’i and momentar; for each degree of freedom.

to calculate expected values. This dependence for all particles is denoted by the variable
Here we construct the relevant statistical-density functiom,

from microscopic multipoles, which are incorporated in the  The macroscopic applied electric and magnetic filgs

Robertson projection-operator model. It has been shown thena are functions of onlyr andt and not functions of the

for origin invariance in Maxwell’s equations it is necessary phase-space coordinates.

to include a quadrupole contribution in addition to the elec- Most of the analysis in this paper is performed classically;

tric dipole moment in the constitutive relationship for the however, it could easily be performed, with minor modifica-

displacement field, whereas only the magnetic dipole motions, as a quantum-mechanical analysis where the Poisson

ment needs to be included in the constitutive relationship foprackets are replaced with commutators and the expectations

the induction field. Since molecular and atomic moments arecome traces of operators. The definition of the classical
measurable quantities, we utilize the commonly used definitrace is

tion for the effective microscopic dipole momef#]. With

this averaging the phase-space variables become the molecu- :f A di = f dr 11
lar centers of mass. The dipole and quadrupole moments are Tr0= | Odry.. drydm.day Odr’, (19

IV. POLARIZATION, MAGNETIZATION, AND STRAIN
DENSITY

Pan= > [n€, (7)  and the expected value is written as
" (Fy=Tr(Fp). (12)
.1 The molecular dipole magnetic moment of thtd molecule,
On= Eg)ekrknrkn' (8  my, can be written in terms of intrinsic magnetic-spin mo-
n

mentsmgy,, and any other contribution due to charge motion
However, the theory developed in this paper is not limited toof the form(e;/2M)r, X 7j,. The spin gyromagnetic ratios
homogenization at the molecular level and a more microare defined byy;=g;e/2M;, with g= 2 for an electron. The
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canonical momentum of thigh charge in molecula relative  and momenta of all the particles, but have no explicit time
to the center of mass igj,=Mfj,+ea(r;), wherea(r;) is  dependence. The time dependence enters through the dynam-
the microscopic vector potential. In addition to molecularics, after taking the expectation. The Hamiltonian is time
moments there may also be moments due to domains arttependent through the applied fields. If the closed system is
eddy currents. The total microscopic magnetization is thern contact with a heat reservoir, this term must also be in-
the sum over magnetic moments of the molecules timés a cluded in the internal-energy density.
function: The kinetic energy and angular momentum-related terms
in the internal energy do not commute with the polarization
m(r) = > Mgadr —r,). (13)  and therefore, when calculating the time evolution, will con-
n tribute when calculating the Poisson brackebmmutatoy
M (r,t)=(m)=Tr[mp(t)]. Higher magnetic moments could [p,U]. We use the symbols] for either classical-mechanical
also be included. Poisson brackets or quantum-mechanical commutators. The
In addition to the polarization and magnetization, we will Magnetizatiorm and the magnetic dipole-dipole interaction

assume that the specimen is acted on by a strain-density tefl9 Not commute withm and therefore will contribute to
sor &j¢(r) [m,U]. The polarizationp and &€ do commute with them-
ij .

selves, wheream does not. In addition t@, the Robertson
Brojection operator, statistical-mechanical theory uses a
relevant-density functiomr that does not satisfy Liouville’s

Modeling of induced electric moments requires a knowl-
edge of the positions of all the charge in the molecules an

therefore a finer level of homogenization. Modeling of per- . . i .
equation, but an exact relationship can be constructed in

manent electric dipoles requires only knowledge of the coor N
P d y g terms ofp, o, and a projectionlike operat¢4]. o character-

dinates of the dipole and therefore the expectation calcula- T .
tions simplify. izes the local state at any time in terms of Lagrange multi-

pliers that are functions of the macroscopic electromagnetic
and thermodynamic quantities. The basis of the Robertson

V. EVOLUTION EQUATIONS FOR POLARIZATION, projection-operator method involves the separation of the
MAGNETIZATION, AND STRAIN DENSITY relevant-variable contributions from the relaxation and dissi-
A. Relevant density function pative terms. The reader is referred to Robertson’s papers for

further details of the methof,30] and other paperg4,31.

The goal of this section is to develop the relevant-density, his formalism the statistical-density functigoperatoy p
function and expressions for the time evolution of the polarig rejated to the relevant-density functionby

ization, magnetization, and strain dendity},29. The analy- .

sis is semiclassical and in the equations of motion we use .

Poisson brackets between position and momentum variables, p(t)=o(t) - fo d77(t, {1 - P(D}iL(na(n), (19
and also include intrinsic angular momentum.

We consider the system to be dynamically driven by apwhere. is Liouville’s operator, which in a classical analysis
plied electromagnetic fields and thermally isolated from thesatisfies LA=—[H,A] and quantum-mechanical analysis sat-
surroundings. We assume that the currents and charge creatfies i LA=i[H,A]/#. Note, for a quantum mechanical
ing the applied fields are external to the system. In this secanalysisi/# must be included in alf/,A] brackets in this
tion we define the Hamiltonian, introduce the information paper. AlsoP is a non-Hermitian projectionlike operatf#]
entropy, and then derive expressions for the macroscopic palefined by the functional derivative
larization, magnetization, strain density, and internal-energy m
den3|ty. These expressions Wlll_be used in the next section PHA=S d3r50—(t)Tr(FnA), (16)
for derivation of evolution equations. ! XFp)

The Hamiltonian contains the interaction of the applied
electric field with the electric polarization, the interaction of for any quantum-mechanical operatérand, as a conse-
the applied magnetic field with the magnetization, the interquence, do/dt=Pdp/dt. The integrating factor operator
action of the applied stress interaction with the strain densityZ(t, 7) satisfies the initial-value problem

and the internal-energy density. The internal-energy density 9T, 7)
U includes the potential-energy densifi£;p¢(r;) and — =T7t,D{1L-P(D} L, (17)
kinetic-energy density of the lattice in the unperturbed ar

Hamiltonian H,, plus dipole-dipole interactions, exchange with initial condition 7(t,t)=1. In the limit of linear re-

interactions, magnetic anisotropy, and other interactions sponse,7 reduces tdexpi(t-1Lo)], where L is the ap-
proximate Liouville’s operator, as in the Kubo theory, corre-
H(t) = f Ay U(r,I) = p(r,I') -E(r,1) sponding to an equilibrium Hamiltonian. All of the operators
7, P, and L are linear. The statistical-density function in Eq.
1 - (15) is given by a reversible-density term plus an irreversible

- IU“Om(raF) : Ha(l',t) - Egs(ryr):za(rvt)}- (14) term.

The relevant-density functiowr is constructed through
Note that ,:, denotes tensor contraction. The microscopitheoretical constraints on the polarization, magnetization,
quantitiesp, m, &;, andU are functions ofr and positions  strain density, and internal-energy density by maximizing the
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information entropy for each time The entropy is defined larization. As a simple example, we consider a collection of
as charges in a-directed electric field. We neglect the internal
_ energy. The microscopic polarization is defined ps

St = -KTrla(t)in o(v)], (18) =3,pand(r —1,), the Lagrange multiplier is\,=—E,e,/KT.

wherek is Boltzmann’s constant. Maximizing this entropy We consider only expectation of a single dipole moment. The

subject to constraints on the multipole moments and internaielevant density function is

energy yields the most probable relevant density function 1

that descrlpes the statlst|ca[ partlclellnteractlons formlng thg o= —exp(E Py - Ep/kT). (22)

macroscopic electromagnetic behavior. The entropy is maxi- Z n

mized subject to constraints on the expected values of th

relevant variables=;, which are the macroscopic variables The macroscopic dipole moment pf, is

M, P, U, andgs: 2 (7 )
L Paz1) = f dl“pd(zl)o(l“):? f dépgz)Sin 6 cos 6
(Fi(r, b)) = zTrlE(r)exp(—f d®r 2 N (r7 DN - Fj(r’)ﬂ . 0
j 2, PazEp(ri)cos 0

(19 Xex KT e, (23
Higher-order multipoles could also be included. This equa-
tion is a relationship between the relevant macroscopic vari- p3 2Ep(r1)
ables and the Lagrange multiplier fields. The partition func- =———e, (29
tion is 3kT

where the the last term in E@24) is a high-temperature
Z= Tr(ex - f d3 9 B(r ’,t)(U(r ") = pom(r’) - Hy(r',t) approximationdI" denotes integration over phase variables.
The partition function is

=p(r') - Epr',H) = %E;(r’):fs(r',t))”), (20) (Ei Pz - Ep(ro)
szdl“ expl ————

. - . KT
where the Lagrangian multipliers are related to the inverse

temperatures(r ,t)=1/kT(r ,t) (wherek is Boltzmann’s con- Ei Pazy Ep(ri)cOS 0

stany, normalized electromagnetic fieldsgtr ,H)E(r,t), :quf sin 6 ex T do. (25

=B(r, ) uoH(r ,1), and stress fieldsg2../2. These Lagrang-

ian multiplier fields interact with the microscopic polariza- The result given in Eq(24) is the same as obtained by

tion p, magnetizationm, and strain density,. E, andH, are  rotational-diffusion approaches. Equatié¥) could be used

applied fields, whereag, andH,, are effective local fields to determine the effective local fiel,.

that interact withp and m. These constraints are incorpo-

rated into the entropy expression by use of Lagrange multi- ) , .

pliers, and the resulting variational expression is maximized B. Equations of motion for P, M, and &

to obtain the relevant-density function Using the Robertson formalism, equations of motion for
1 the relevant variables can be develojgge Appendix A In

a(t) = _eXp{_j d3r’{ﬂ(r’,t)<u(r’) = uom(r’) -Hy(r',1) this paper, we give only the results of the equations of mo-
Z tion and refer the reader to previous work for detdilg)].

1 - ) } For each of the constraint variables we have
—p(r') -Ey(r',t) = =&edr'):2.(r',t . 21
P(r') - Bp(r' 1) = Se(r):2e(r'.) (21) E ()
I =~ TH(H, Frnlo)
The initial condition isa(t=0)=p(t=0) [4,32. Sinceo is a dt
relevant, local-equilibrium density function, all expectations t
taken with respect to relevant variables are called reversible. -> f d3’ f Tr((H(t),F(r)]
To summarize, we have expressed the expected values of i 0
the magnetization, polarization, strain-density, and internal- XT(t,7)(1 =P, ))[AH;(r,7),0(7)])d7.

energy density as functions of Lagrange multipliers. The

relevant-density functionr is a function of the Lagrange (26)

mtéltiplierj and g:harr;cterizes the Iocal—elqu_ilibrium state. Inn Eq. (26), F;=m, F,=p, F3=&, AH;=—uem-(Hy—H,»),

order to determine these quantities, evolution equations arg,, _ D le e & .

required. The evolution equations will be developed in theEHz__p'(Ea_Em)’ andA%y=—3¢:(2a=2,) (See Appendix

next section. The statistical density function is expressed iff)- The magnetic reversible term is (T#, m]o)

terms of the relevant statistical-density functiperatoy. ~ — #0YetM (I, 1) X [Ha(r,t) =Hp(r, )= Tr([om,p-(Eq

In this respect the resulting evolution equations are exact. —Ep)]cr)—Tr{[,uom,%é’a:(Ea—Eg)]U}, where vy is an ef-
Example: the density function and calculation of the po-fective gyromagnetic ratio. The other reversible terms can be
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tors of the relevant variables with the Hamiltonian. Note that [#om(r),o] = Blu,uem]o + B8
the term[U, o] in the above has been eliminated in terms of

the effective local fieldH,, E,, i; (see Appendix B The

projection operator in the relaxation term subtracts flux and

assures proper behavior of the correlation functions at large

times. The cross-coupled terms in E86) reduce to 0 when (30

there is no correlation between the magnetization, polarizayherep, is the effective magnetization-charge density satis-

tion, and strain density. We note that the macroscopic fieldgying V-m=~—p,. Note that the first current term in each of

do not occur explicitly in Eq(26). A relationship will later  these expressions contains linear velocities and the second

be derived between the applied fields, H,, fa, effective  contains rotational motion. The correlation between the rota-

local fieldSEy, Hy, fa, and the macroscopic fields H, §E. tional parts in the magnetic_-current densif[y yields spin
waves, and the nonrotational is related to spin transport and

magnon-electron interactiong83—-35. Finally, the strain-

current densities are defined by the relations

The evolution equations are relatively complicated, and - -

for further analysis simplifications are needed. Fortunately, Je(r) ==[H,Er)]. (31)

the forms of these equations do lend themselves to simplifi-

cation. We note that the commutators in the evolution equa-

tion are material-related quantities. These commutators can D- Approximations to the local and macroscopic fields

be approximated. For example, the polarization-current den- |n order to obtain approximations to the local fiells,
sity, neglecting strain behavior, is H,, in terms of the macroscopic fields we can expand Eq.
. (19) to first order:
Jpy = —[H,p(r)]

calculated by evaluating the Poisson brackets or commuta-
oM, o | M -Hr o

Pd(i) -
=- E B,U«ovﬂi(f"' Bﬂéyef m X Hyd* o,
i i

C. Approximations to the Poisson brackets

Ep(r,) = ¥ omoP(r, 0 + Ly - P(r,0), (32)
z—[u,ICJ]-{Io,Mofm-Hade'f}
Honr 1) = YoM (r,8) + Loy - M(1 1), (33)
zE%%i—{p,uofm-Had%] (270  and
S =~ Yol :Er )+ Lg&r b, (34)

whereu is the internal energy and is the particle momen-

tum. Also, using the knowledge thatdoes not depend on \hereL,, L, and L are dielectric, magnetic, and strain
momenta and the definition of the Poisson bracketsr]  depolarization tensoril4] and Yoeo Xomm and ¥o.. are the

=2 (ap/dry)(dol dmy) we have static susceptibilities.
In materials the macroscopic fields differ from the applied
- _ 3 fields in that they contain the effects of surface-
[p(r),o] ,B[U,p]0'+,8|:p,,u,0j m - Hid r}g depolarization charge that modify the applied field. For ex-

ample, the macroscopic electric field is approximated as
~ _,32 mﬁi(ﬁ BE Wim X Pi0, (28) E(r,t)=Ea(r,t)—L,-P(r,t). This same form holds for the
T M [ magnetic and stress fields.

o ) i In a first-order linear approximation, the constitutive rela-
where we used -p=-py, the kinetic energy in the internal jons can be obtained from E¢L9):

energy, assumegd is constant, and,,, is an effective angu-

lar veIociFy. The first term on t_he right-hand sidél—!S) of P~ XeeEp+XenHm+)?es'§a + Xed T=To) (35)

Eq. (28) is a current due to linear bound-char¢gipole) _ ) )

transport and the second term is due to charge rotation. Where the terms correspond, respectively, to dielectric relax-
The magnetic-current density also contains a linear cur@tion, magnetoelectricity, piezoelectricity, and pyroelectric-

rent due to spin transport, plus a precession contribution Y:

im@ = —[H,m(r)] M %XmeEp+anHm+A_;ms'Es"')_()mu(T_TO)v (36)
where the terms correspond respectively to magnetoelectric-
~-—[um]-|m, m - r ity, magnetic relaxation, piezomagnetic, an romagnetic-
[um]=|m,uo| m-Hd ity, magnetic relaxation, piezomagnetic, and pyromagneti
ity, and
Pd() - 2 o - o T, o
= 2 Vwi - :“O'Yef m X Had3r (29) E= Xse' Ep + Xsm Hm* Xss2e + Xsu T-To), (37
1 I
where the terms correspond respectively to piezoelectricity,
and piezomagnetic, strain relaxation, and thermal expansion.
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Example: the Lorentz local field\s a check on the inter- E. Simplified expressions for the evolution equations

pretation ofE, as a local field, we consider E(2) for the

case of a cavity in a dielectric. For an ellipsoid, the depolar- S|rt1_ce the e(guatlons are ?Xafta the dc_onst[[tutllve eYO“f[.t'on
ization factor 1S Ly=(e,x )/ €1 (o~ 1). Therefore, 4uations can be very complicated and in actual applications

! . simplifications need to be applied. In this section we appl
for a sphere the local field reduces to the Lorentz local f'EIch)urgpproximations and drop??he cross-coupling terms irﬁ)rt)hye

equations of motion in Eq26). In this section the absolute
b value ofe is used iny. Using the approximations developed
Ep(r,t) - X«»c—)l P(r t) + fp P(t)=E+—. (39 in the_ previous sections for the magnetization, with no cross
PP 3¢ coupling, we have

OM(r, t

6(: ) ~ po’)’effM(l',t) X H(l‘, t)
¢ -1 -

- / d’r’ / Tr (Bimn (5. DT (¢, 7)1 = P(7)) [rom(r’,0(1)]) - Xomrm - (M, )= Xomm -H(r', 7)) dr.
0 R V

Km (39)
[
Note that for electrong,y; is negative. In a linear approxi- F. Bloch-Bloembergen

mation, when the time dependence is in the form of a con- |, ihe special case of afunction response in Eq39)

volution, the magnetic susceptibility tensor can be identified ., < < .
as g P y with K,.=Kommd(t—7)8(r =r’)/ 7, we have a variant of the

Bloch-Bloembergen equation:
IM(r,1)
at

Kk, ) = [1 +i0K 1K, )] Komm (40) ~ poYerM (r,t) X H(r,t) =[M(r,t)
where the frequency dependence denotes the Fourier trans- = Xomm* H(r, )/ 7pn. (41)

form and I%nl(k,w) is the relaxation-time tensor. Equation
(40) yields an interpretation of the relaxation-time kernel as a
distribution of relaxation times. In the special case where the kernel in E2p) is

Landau-Lifshitz equation

_ oay{M(r,t) X [M(r,t) X H(r,) [HM (r',7) X [M(r',7) X H(r',7)]}

K, r,tr',n= St=7dr-r"), 42

! R M| [M(r,t) X H(r,H)] - [M(r',7) X H(r'",7)] =74 ) (42
[

we recover the Landau-Lifshiftz equation aP(r,t) 5 t )
o =-Tr([H,plo) —fd r’f TH{Bj peay (r, Y 7Tt, [ 1
0
M =P, Dp(r"),o(D]} - ¥ gee- [P, 7)
r, PN
PN oYM (r,t) X H(r,t) - lﬁlyM (r,t) X [M(r,t) = Xoee* E(r',7)]d7. (44)

X H(r,t)]. (43)  This equation is a generalization of the Debye equation of
motion, and for linear response the Fourier transform can be
used to obtain the polarization in terms of the macroscopic
field. In a linear approximation, the electric susceptibility

The approximation for the polarization rate is tensor is
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Ke(k, @) = [1 +i 0K (K, ©)]  Koee (45) Tr(hp) = Hi(r,0)
t
Debye response occurs when the relaxation-time tensor :Tr(ha)+fd3r’J d7Tr{h(r)7(t, D{1 - P()}
XYk, w) is a constantr,. The strain-density rate without 0
cross-coupling satisfies X[H, o]}
t
&E(I’ t) . t ~ =H —J d3r’f d7Tr(Bh(r)7(t,n{1 - P(7)}
=T Eo)- j o’ jo T Tt L = P(D)] 0

X[uom(r'),o]) -[Ha(r',7) —Hp(r', 7)]

X[E(r"), (D]} - X ok - [E(r',7) t
—fd3r’f d7Tr(Bh(r)T(t, N{1 - P(7)}
0

_XHOSS:gE(rriT)]dT- (46)

. o : - X[p(r'),o]) -[Ear’,7) = Ep(r’, 7]
In a linear approximation, the strain-stress tensor susceptibil-

. - t
ity is —fd3r’f d7Tr(Bh(r)7(t, {1 - P(7)}
0

PEN _ . -1 -1 e < <
Xo(K w) =[1+io K (K o)™ Xoee- (47) X[r"), oD [2a(r’, 1) = 2,(r", D)]. (49)

In the projection-operator method that forms the basis ofa gimilar equation holds for the strain fields. Equatig4s)
our work, the calculation and simplification of the projection 5,4 (49) define the relationship between the microscopic,
and evolution operators are complicated; however, Nettletof, 4 applied, and macroscopic fields.
[31] has studied methods for simplifications of the correla-  \we have defined the macroscopic fields as the expectation
tion functions that occur in the Robertson theory. of the microscopic field with respect to the relevant statistical

density functiono:

VI. LOCAL FIELDS E(r,t) =Trle(r)o], (50)

We still need to express the local fields in terms of the H(r,b) = Tr[h(r)o], (51)
macroscopic fields. We can extract the relationship between
the macroscopic, local, and applied fields multiplying Eq. = N
(15 .b.y the microscopic field and taking theT trac<_a and by Se(rt) =T o] (52)
requiring the expected value of the respective microscopic N ) o ) _
electric and magnetic fieldsandh to be the effective local N addition, the macroscopic charge density is defined in
fields E, andH . With this assumption we have terms of the microscopic charge density{as=Tr(p0).

These definitions of the macroscopic fields in Egs.
(50«(52) make sense becauseis the density function for
the relevant variables such that the expectation taken with
the microscopic relevant variables is required to match the

macroscopic variableB, M, &, andU. ThereforeE, H, and
3¢ are the relevant macroscopic fields. Equatif®, (49),

Tr(ep) = Ey(r,t)

t
=Tr(eo) +Jd3r’f d7Tr{e(r)7(t, D{1 - P(D}
0

X[H, (D]} . =
. and(19) are coupled equations f&, H, 2g, E,, Hp, and2.,.
Equations(48) and(49) serve as the definitions & andH
—F _ 37 -
=E Jd r fo d7Tr(Be(r)7(t, 7{1 - P(n)} and also show how the Lagrange multipli&s andH, are
related to the microscopic fields. The relaxation terms in Egs.
X[p(r'),o]) - [Ea(r’,7) —Eu(r',7)] (48) and(49) are correlation functions between the field at
t and the time-rate of change of the relevant-density function.
—fd3r’f d7Tr(Be(r)7(t, {1 - P(7)} Equation(50) can be compared to the most commonly
0 used way to construct the macroscopic field from the micro-
X[pom(r), o) - [Ha(r',7) = Ho(r, D] scopic field. In this commonly used approach, a distribution

: function fy(r) is postulated according to the length scale and
_fd3r,f drTr(Be(r Tt )L - P()} wavelength of interest, where
0
_ - - E:fdr’e(r —r")fy(r’). (53)
X[Ss(r,)vo-]):[za(r,!T) _Ea(r,lT)]v (48)
However, the distribution functioriy is seldom explicitly
and needed or determined in the analysis. In general, this distri-
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bution function must depend on the material properties since  B(r,t) = ugH + uoTr(mo) = uoH (r,t) + uoM(r,t).

it is the constitutive relations that determirieIn our ap- (59)
proach the averaging function is explicitly constructed in

terms of the polarization, magnetization, strain density, and The induction field satisfies

internal-energy density in a self-consistent fashion. _ _

These definitions of the local fields in Eq48) and (49) Vv B(r,0)=V - Tib(r)p]=0. (60)
are exact generalizations of the Lorentz expression(&q. We use these results when we derive Maxwell's equations
and that given by Robinsof2]. We can approximate these from first principles(see Appendix Dfrom Liouville’s equa-
expressions for the local field: tion.

t
£, = E(r,t)+J d3r’f TH(BerY T, DL P()} VIIl. CONCLUSION
0

In this paper we studied the local and macroscopic fields
X[p(r"),o()]) _;_1 IP(r"7) and the constitutive relationships as functions of the micro-

' Opp ' scopic and applied fields. We developed expressions for the
= Xopp - E(r',71)]dr, (54) local electric, magnetic, and strain-density fields in terms of
the macroscopic and applied fields using a projection-

t operator, statistical-mechanical theory that is valid to the
Hp(r,t) = H(r,t)+ f d3r’j Tr(Bh(r)7(t, {1 - P(7)} submolecular level. The macroscopic fields are defined as the
0 expectation of the microscopic fields with respect to the
X[ gm(r’"), YL M relevant-density function and the local fields are defined as
E’uo (r).0(n)]) - X omm: [M(r" 7 the expectation of the microscopic fields with respect to the
~ Xomm* H(r',7)]d7, (55  full statistical-density function. This theory incorporates a

self-consistent averaging procedure for obtaining the macro-
scopic polarization, magnetization, and strain density from
- - t - the microscopic quantities, which is valid at all length scales.
2= 2E(r-'[)’fjdar’f Tr(BZ(r)T(t, {1 - P(7)} The constitutive relationships are expressed in terms of the

0 macroscopic fields, derived from first principles, and include
<Nl e effects of the temperature, strain, and internal-energy density

o), 2D X e [ £ 7) interactions. Our method deviates from the methods devel-
—fossigE(f’,T)]dT- (56)  oped by Mazur and Nijot_)oer, Ropinson, and Jackson.in that

we construct the averaging function by using constraints on

the polarization, magnetization, internal-energy density, and

VII. DISPLACEMENT AND INDUCTION FIELDS strain density{see Eq(19)]. In the inverse problem the rel-

' . evant distribution function is used for averaging of the mi-

We now want to define the displacement vector on g qqcqpic fields. These equations plus evolution constitutive
nearly microscopic level. For time-dependent fields in mate'equations in Eq(26) determine the Lagrange multipliers and

rials, only the part of the microscopic electric field in EQ. nacroscopic polarization, magnetization, internal-energy
(50) contributes tad as in Eq.(50). As noted by Jacksoj8], density, and strain density.

at a truly microscopic level it makes little sense to define the The local field is composed of the macroscopic field and a
displacement field since it is a byproduct of the averagingyaterial-related field. Part of the local field may be due to
used. We define the displacement figtwperatoy as d(r)  gffects of external parameters such as temperature and quan-
=€oTr(eo) +ele(r)—Tr(ep)]+p(r). The macroscopic dis- m effects. The internal and free energies affect the electro-
placement vector is defined as magnetic behavior. For example, the temperature, exchange,
_ _ _ _ and anisotropy interactions all influence the dipole orienta-
D(r,t) =(dp) = €Tr(€0) + Tr(pp) = & + Tr(p) = &E(r,Y tions and therefore the fields. Usually these internal-energy
+P(r,t). (57)  effects are modeled by an effective field.

The correlation functions are expressed in terms of
current-current correlations, phonon-phonon interactions,
phonon-magnon interactions, and magnon-magnon interac-
tions. Application of the derived theory yields extensions of
V.D(r,)=V - THd(r)p] = Tr(E e dlr - ri)a> = Tr(p0), the Debye and Landau-Lifshitz equations. In the Appendixes

i we also show how Maxwell’s equations evolve naturally out
(59) of the projection-operator formalism and define a nonequi-
librium entropy for time-dependent electromagnetic re-

wherep; is the microscopic total-charge density. sponse.

Similarly the microscopic magnetic induction field is de-
fined, in terms of the microscopic field and the magnetic APPENDIX A: EQUATION OF MOTION
moments m, to be b(r)=ueTr(ho)+uh(r)-Tr(hp)] Using this formalism an equation of motion has been de-
+uom(r). Therefore the macroscopic induction field is veloped[4]

and

Since the polarizatio® may depend on the magnetic field, it
is possible thatD can depend on the magnetic field. The
definition of the macroscopic free-charge density is
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a(F ! dgt dor(t
% = (I LF f Tr{{H,F 71 - P)[H,o(7)]}dT, % =- kTr(Z—i)ln a(t))
0
(A1) ~ J ok { U _ 9Preiax IMelax |,
- | ., - .. "Ra" Mo "Ha
where classicalliLF)=-Tr((H,Fn,]o) or quantum me- T( at ot Jt
chanically (iLF)=(i/h)Tr([H,F]o). The first term on the 10€ -
right side of Eq.(A1) is the reversible or convection term; - E—:Ea
the second is the relaxation term. Equatiéi) is exact and dt
has been used for other applicatidag)]. 1) aP(r 1)
— 1Hrel
= f dr P L Ep(r,t) — Eqr,1)]
APPENDIX B: SIMPLIFICATION IM(r.1)
Hrelax _
We can eliminate the effects of the internal eneugy the  Ho at [Hp(r,) = Ha(r,0)]
current term in Eq(26) using the following argument: -
1€ o o
N N + EE:(ES - Ea)}
Bu-2 N\ -Fio | =0=p4ual- 2 [\ -Fiol.
i=1 i=1
1) oD(r,t) dB(r,t)
~| dBrz) —— E(r,t)+ —— -H(r,t
(B1) f T{ at .9 ot ry
Therefore g
, 14 ) 5 10€ o
| 2(9'[(60|E| + uglH|?) + >t 2af- (C2
plu,o]= [21 Ai - Fiﬂ] ' (B2) The subscriptrelax) indicates that only the relaxation part of
i=

Eq. (26) is used. The RHS of EqC?2) is the entropy pro-
duction [36,37. The reversible terms do not contribute di-
rectly to the entropy rate becausgillo)=0. Zimmels[38]
APPENDIX C: ENTROPY IN TIME-DEPENDENT has noted that when calculating the entropy in an electro-
ELECTROMAGNETISM magnetic system, the entropy without the system in place
Jpust be subtracted when usiyandB as field variables.

fields are time dependent. Since we are considering a closedfUation(C2) manifests this in the subtracted terms. The last
system, it is thermally insulated from its surroundings. How-€duality in Eq.(C2) shows that the entropy production is the

ever, heat may be generated by dissipative interactions of tr@fferen(_:e between the entropy rates with e}nd without the
fields with the dipole moments, producing thermal energy_sysstem in place. We have used the fact that in vacuum there
from the electromagnetic fieldQ/sec=/J-EdV. The net 'S MO Stress or strain. -
work related to the field change frobh to H,, is contained in In the equilibrium limit, in terms of the macroscopic fields
the dipole-dipole internal energy and changes in kinetic enl38l,
ergy. If the applied field is turned off, no more work is per-
formed on the system, and the temperature and fields will TdS:f(duM -E-dD-H -dB)dV, (C3
adjust to a state of maximum entropy as it approaches a
thermodynamic equilibrium, with a time-independent Hamil-where dS denotes only changes in the nonelectromagnetic
tonian. The entropy chang#S=dQ/T is due to the system entropy and/), is the total Maxwell internal-energy density.
going from a nonequilibrium state to the equilibrium state, |n equilibrium, the static electromagnetic entropy is
and in the procesaS=0. U

We can calculate the nonequilibrium entropy for the Sem=_< em)VEB+Sem(a)

The Hamiltonian is time dependent because the applie

whole system from Eq(18): aT
S(t) =~ KTr[o(®ln o(t)]= f d3r?[u(r,t) = P(r,0) - Eglr,1) =" o7 9DF | 7 dB AV Senia)
JE JH ,
—MoM(r,t)-Hm(r,t)—%g(r,t):i(r,t)}+k|n Z. :‘f(fﬁ_T'dP’fﬂofa—T'dM)dV, (C4

(C1) where we used the approximations to the macroscopic fields.
S.ma) IS the electromagnetic entropy in the absence of the

The last term is related to the free enefgy kT In Z. system, and/’ is the total volume where the fields are influ-
The time rate of change of entropy of the system that isenced by the presence of the system, as determined from
driven electromagnetically is solution of Maxwell's equations. For linear response with no
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temperature  dependence in the fieldsgE/dT= Tr((b-H,d]p)=V XH (D5)
—(dxel IT)D/ €2, dH 1 IT==(Ixm! IT)B/ u?.
and
APPENDIX D: MAXWELL'S EQUATIONS DERIVED
FROM THE FORMALISM Tr((d-E,b]p)=-V XE. (D6)

Consider a dielectric-magnetic material immersed in elec- The current density is related to the kinetic energy of the
tric and magnetic fields. The applied macroscopic fields aréee charge[39]. We define the current density akr,t)
turned on at=0 and drive the nonequilibrium process. In a=Tr([d,uylp) =Tr([d,T]p), whereT, the kinetic energy of
finite time after a field is applied, relaxation occurs in thethe free charge expressed in terms of the canonical momen-
material and modifies the molecular-interaction fields in thetum, is
material. The goal is to derive Maxwell's equations by con-
sideration of the microscopic electromagnetic quantities and 7= IT; - II;
the system Hamiltonian. We assume there are both free as 7 2m
well as bound charges in the material.

The microscopic displacement field is defined in terms ofwhere the canonical momentum §§=;—ea;. Through
the microscopic polarization by E¢57). The macroscopic evaluation of Poisson brackets and from the definition of the

induction field isB=Tr[b(r)p]=uoH(r,t)+ oM. The mac-  microscopic free charge, the Maxwellian current density is
roscopic displacement field iB=Trd(r)p]=¢&E(r,t)+P.

(D7)

Of courseP andM can each be functions of bofhandH. J(r) =Tr([d,uy]p)
The Hamiltonian for the system will now be expressed in _
terms of the macroscopic fields instead of the applied fields. - E T 8(r —ri)p]

This is accomplished by substituting for the applied field in

Eq. (14) in terms of the macroscopic field plus the correc- _ 3, !

tions due to surface depolarization and demagnetization. This - 2:' TG Sr - rol- | dr o 2.: Tr(I&(r - ri)
is equivalent to subtracting the depolarization and demagne-

tization potential energy from the internal energy in Eif). XT(t, D{1 - P(n)}p(r'),o]) - EdT

The Hamiltonian is

t
—Jd3r’J > Tr(IL8(r = ry) T, {1 - P(7)}
H(r):f(UM—d-E—b-H)dz‘r, (D1) 0|

X[m(r"),o]) - Hdr, (D8)
where the Maxwell internal-energy densitl, is a sum of ) ) . ]
the energy densities due to the material and the fielgs. where we have used the following vector relationship to sim-

depends on the canonical momentum through the kinetic erlify the current density
ergy. Now we wish to obtain Maxwell’'s equations from Li- (I-V)d=(V-d)I-dV -IT+(d- - V)I- V X (d X II)

ouville’s equation
~(V-d)II— > edr —r)II,. (D9)
220 = (10t ). (02) i

_ _ _ Similarly, we useV-b=0 to show that magnetic free cur-
Using Eq.(D2), and taking the expectation af andb we  rent vanishes: Tfb,uy]p)=0. Therefore combining the re-

find sults we see we have the macroscopic Maxwell's equations
dp\ D
) dD
Tr(dat) gr - TaHeD, (b3) C2=V xH-3, (D10)
(?p> 9B
Trlb— | =—=Tr(b[H,p]). D4 JB
( o) or - MelHpD (D4) ~L =" VXE. (D11)

There are two ways to obtain the curl terms in Maxwell’'s ) o i
equations. The quantum-mechanical approach is to assume The time derivative of the Maxwell internal-energy den-
the microscopic field components obey the commutation reSY Um=Tr(Unp) can be calculated from Eqg38) and
lations for quantized fields. The classical Poisson-bracket apf—Dz):
proach in materials for obtaining the curl equation is to write

the microscopic induction field @=V X a (whereea is the IUT.Y = D0 E(r,t) + 9B@.Y) H(r,t).
field momentum of a charged partigleB=V X Tr[a(r)p] at at
and use of vector identities, the definition of the divergence (D12)

of the microscopic displacement vector, and Poisson brackets
to obtain the curl expressions in Maxwell's equations. WithThis is the same expression that was derived by Landau us-
either approach, ing another approacfd0]. The relationship of the Maxwell
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internal-energy density to the material internal-energy den-

sity U is

1

2

Uy U
_ 4
at at

J|EJ?
Jdt

d|H[?
Jt

<EO + uo ) . (D13)
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1
uM:E(D-E+B-H). (D14
Using Maxwell's equations we obtain the general equation of
energy conservation

Iy

—2+V.Sy=-J-E,

T (D15)

where the macroscopic Poynting vectoSjg=E X H. Equa-
tions (D12) and (D15) are very general and not limited to

For linear systems, the integral can be performed to obtainlinear dielectrics.
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