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We study the electrodynamics of materials using a Liouville-Hamiltonian-based statistical-mechanical
theory. Our goal is to develop electrodynamics from an ensemble-average viewpoint that is valid for micro-
scopic and nonequilibrium systems at molecular to submolecular scales. This approach is not based on a Taylor
series expansion of the charge density to obtain the multipoles. Instead, expressions of the molecular multi-
poles are used in an inverse problem to obtain the averaging statistical-density function that is used to obtain
the macroscopic fields. The advantages of this method are that the averaging function is constructed in a
self-consistent manner and the molecules can either be treated as point multipoles or contain more microstruc-
ture. Expressions for the local and macroscopic fields are obtained, and evolution equations for the constitutive
parameters are developed. We derive equations for the local field as functions of the applied, polarization,
magnetization, strain density, and macroscopic fields.
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I. INTRODUCTION

The goal of this paper is to study electrodynamics in ma-
terials using a Liouville-Hamiltonian-based projection-
operator statistical-mechanical theory. The motivation for
writing this paper evolved from a need to apply electromag-
netics at the molecular and submolecular scales, in order to
relate single-molecule measurements to theory. The impor-
tant features of our model include a nonequilibrium
statistical-mechanical analysis and definition of the macro-
scopic and local fields, the self-consistent construction of an
averaging function for deriving the macroscopic field from
the microscopic field, definitions of the susceptibilities, and a
comprehensive development of the constitutive relationships
for the current density, polarization, magnetization, and
strain density. Nonequilibrium aspects include time-
dependent fields and variable temperatures.

Previous pioneering microscopic electromagnetic theories
developed by Mazur and Nijboer[1], Robinson [2], and
Jackson[3] expand the charge density and the coefficients in
the expansion are the multipole moments. The averaged mo-
lecular multipoles are treated as point multipoles. This works
well down to near the molecular level, but breaks down at
the molecular to submolecular level. Using Robertson’s
theory[4], we use an inverse problem to determine the gen-
eralized canonical(relevant) statistical-density averaging
function from knowledge of the expected values of the po-
larization, magnetization, internal-energy density, and strain
density. This is then used in the Robertson projection-
operator theory[4] to derive constitutive evolution equa-
tions. The method uses Lagrange multipliers that turn out to
be local fields and inverse temperature. Evolution equations
are also found for the material parameters. The closed set of
coupled nonlinear equations includes equations for the ex-
pected values for the polarization, magnetization, local field
and macroscopic fields, and strain density. The correspond-

ing evolution equations for these quantities determines the
unknowns, which are the local fields and macroscopic polar-
ization, magnetization, and strain density. The macroscopic
electric and magnetic fields are also explicitly defined. The
method is self-consistent since the relevant statistical density
averaging function is a function of the macroscopic observ-
ables and therefore the length scales are intrinsically incor-
porated.

The projection-operator approach produces expressions
for the relevant quantities, subject to constraints, by decom-
posing the statistical density function into relevant and non-
relevant components, so that the macrovariables are decom-
posed into relevant(reversible) and irrelevant(dissipative or
entropy producing) components. In the problem at hand the
relevant quantities are the macroscopic electromagnetic
fields, the polarization and magnetization, the strain density,
and the internal-energy density. This allows concentration on
the relevant variables while at the same time not discarding
important information in the dissipative parts. The relevant
density function used in the projection-operator technique
allows a systematic and consistent development of the mac-
roscopic and local electromagnetic fields and constitutive re-
lationships. The projection-operator theory we use in this
paper is that developed by Robertson[4]. In a linear approxi-
mation the resulting equations satisfy the time-invariance
and causality requirements of linear systems theory.

Theoretical analysis of the effective local fields is impor-
tant in dielectric modeling of single-molecule measurements
and thin films. Since electrical measurements can now be
performed to very small spatial resolutions, we require good
models of the macroscopic and local fields at all spatial lev-
els. This is particularly important since it has been found that
the Lorentz theory of the local field is not always adequate
for predicting polarizabilities[5,6]. Also, when solving Max-
well’s equations at the molecular level, definitions of the
macroscopic field and constitutive relationships are impor-
tant.

Much of the work performed in the past on local fields
has been for static fields. Mandel and Mazur developed a
static theory for the local field in terms of the polarization*Electronic address: jjarvis@boulder.nist.gov
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response of a many-body system using aT-matrix formalism
[7]. Gubernatis extended theT-matrix formalism [8].
Keller’s [9] review article on the local field used an electro-
magnetic propagator approach. The work in this paper pre-
sents an approach different from Keller’s in that we use a
projection-operator approach. Kubo’s linear-response theory
has also been used for electromagnetic correlation studies
[10,11]. Grandy has recently presented a theory of nonequi-
librium processes based on maximum entropy with new in-
sights into Liouville’s equation[12].

When electromagnetic fields are applied to a medium, the
fields in the material are composed of the effects of both the
applied field and the particle back-reaction fields. For ex-
ample, when an applied electromagnetic field interacts with a
dielectric material, the macroscopic and local fields in the
material are modified by surface-charge dipole-
depolarization fields that oppose the applied field. When con-
sidering time-dependent, high-frequency fields, this interac-
tion is more complex. In addition, there are the effects of the
internal energy on the resulting electromagnetic behavior.
For example, depolarization, demagnetization, thermal ex-
pansion, exchange, and anisotropy interactions can all influ-
ence the dipole orientations and therefore the fields. Usually
these internal energy effects are modeled by an effective field
that modifies the applied field. In constitutive modeling for
use in Maxwell’s equations, our goal is to express the mate-
rial properties in terms of the macroscopic field, not the ap-
plied or effective fields.

The relationships between the applied, macroscopic, lo-
cal, and the microscopic fields are all important for constitu-
tive modeling. The applied field originates from external
charges, whereas the macroscopic fields are averaged quan-
tities. The macroscopic fields in Maxwell’s equations are im-
plicitly defined through the constitutive relationships and
boundary conditions. The macroscopic field that satisfies
Maxwell’s equations with appropriate boundary conditions
and constitutive relationships is generally not the same as the
applied field. The local field is the averaged electromagnetic
field at a particle site due to both the applied field and the
fields from all of the other dipoles[11,13]. The microscopic
field represents the electromagnetic field at the level of av-
eraging used. For example, if averaged at the molecular
level, it is the molecular field, if averaging is carried out at
the atomic level, it is the atomic field.

Particles interact with the local electromagnetic field. The
spatial and temporal resolution contained in the macroscopic
variables is directly related to the spatial and temporal detail
incorporated in the constitutive relationships.

The formation of the local field is a very complex process
whereby the applied field polarizes charge in a specific mol-
ecule. Then the molecule’s dipole field modifies the dipole
orientations of other molecules in close proximity, which
then reacts back to produce a correction to the molecule’s
field. This process gets more complicated for time-dependent
behavior. We define the local electromagnetic field as the
effective, averaged field at a specific point in a material,
which is a function of both the applied and multipole fields
in the media. The local field is related to the average macro-
scopic and microscopic fields in that it is a sum of the mac-
roscopic field and effects of the near field. In ferroelectricity

the local field can become very large and hence there is a
need for comprehensive field models.

In the literature of dielectric materials, a number of spe-
cific fields have been introduced to analyze polarization phe-
nomena. The field acting on a nonpolar dielectric is com-
monly called the internal field, whereas the field acting on a
permanent dipole moment is called the directing field. The
difference between the internal field and directing fields is
the averaged reaction field. The reaction field is the result of
a dipole polarizing its environment and does not directly
influence the orientation of permanent dipoles.

In electrodynamics there have been many variations of
ensemble and volumetric averaging methods used to define
the macroscopic fields[1–3,7]. In previous ensemble-
averaging approaches an approximation to the full statistical
density function is used. In the most commonly used ap-
proach to microelectromagnetism, the first level of averaging
is the molecular moments to produce effective point multi-
poles. Then there is the averaging to produce the macro-
scopic fields. Another type of averaging is for the effective
local field. Jackson uses a truncated averaging test function
to proceed from the microscale to the macroscale fields[3].
Robinson and Mazur use ensemble averaging[1,2]. In these
approaches the averaging function is never really explicitly
determined or needed, but the function is assumed to vary in
a smooth enough manner to allow a Taylor series expansion
of the macroscopic charge density to be performed. In our
approach the relevant-density averaging function is deter-
mined. It is a function of the macroscopic material proper-
ties, produces an averaging in a self-consistent manner, and
allows the macroscopic and local fields to be defined in
terms of the microscopic fields.

This paper is an extension of our previous work, where
we developed constitutive relationships using the same
statistical-mechanical theory[14]. Here, we expand and sim-
plify the correlation functions and include stress-strain rela-
tionships, develop expressions for the effective local fields,
express the polarization either as due to point multipoles or
as submolecular multipoles, and develop expressions for the
susceptibilities. The inclusion of the stress and strain allows
the coupling of the mechanical properties to the electrical
properties. We define the macroscopic fields in terms of a
relevant-density function, or quantum mechanically, the
relevant-density operator. In our approach the relevant-
density function(operator) is constructed in a self-consistent
fashion from the material properties. The correlation func-
tions are expressions of current-current, current-magnon,
phonon-phonon, phonon-magnon, and magnon-magnon in-
teractions. In Sec. III we overview past work on the local
field. In Sec. IV we define the microscopic constitutive pa-
rameters. In Sec. V we present the time evolution of the
constitutive parameters and make various approximations. In
Sec. VI we present derivations of the local fields, and then in
Sec. VII we discuss a definition of the displacement field.

II. CONSTITUTIVE RELATIONS

In materials, Maxwell’s equations are not complete until
we specify the constitutive relationships between the macro-
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scopic polarization, magnetization, and current density as
functions of the macroscopic electric and magnetic fields.
The relationship of the polarization, magnetization, and cur-
rent density to the macroscopic electric, magnetic, and stress

fields can be expressed ashP,M ,Jj⇔ hE ,H ,SJEj, where the
double-headed arrow in this relation indicates that the rela-
tionship could be nonlocal in time and space and the consti-
tutive relation may be linear or nonlinear functions of the
driving fields [15,16]. The constitutive relations contain the
contributions from both the electrical and the mechanical
properties such as stress and strain and thermal properties
such as temperature. When used in Maxwell’s equations, the
displacement fieldD, the induction fieldB, and current den-
sity J must be expressed in terms of the macroscopic elec-
tromagnetic fields.

The fields and material-related quantities in Maxwell’s
equations must satisfy underlying symmetries. For example,
the dielectric polarization and electric fields are odd under
parity and even under time-reversal transformations. The
magnetization and induction fields are even under parity
transformation and odd under time reversal. These symmetry
relationships place constraints on the nature of the allowed
constitutive relationships and require the constitutive rela-
tions to manifest related symmetries[1,17–25]. The evolu-
tion equations for the constitutive relationships need to be
causal and in linear approximations must satisfy time-
invariance properties.

In any complex lossy system, there is conversion of en-
ergy from one form to another— for example, electromag-
netic to thermal energy. The coupling of electromagnetic
fields to phonons— that is, lattice vibrations— is through the
polariton quasiparticle. Magnetic coupling is through mag-
nons and spin waves. These effects are manifest in the con-
stitutive relations and the resultant permittivity and perme-
ability.

It has been well established thatE and B are the funda-
mental electromagnetic fields and have the origin of static
charge, moving charge, and spin. However, when free charge
is present, there are both free and bound currents and we feel
it is more instructive to deal withE andH as fields that drive
D and B. This approach separates the free-charge current
density(J) from the bound-charge current densitys]P/]td. In
a statistical-mechanical approach the microscopic fields are
electrice, magnetich, polarizationp, quadrupole densityqJ,
displacementd, magnetizationm, inductionb, strain density
«Js, and current densityj . These all depend on the classical
phase-space variables or quantum mechanically are opera-
tors. The corresponding macroscopic fieldsE, H, P, D, M ,
B, «J, and J are averaged fields in the material and do not
depend on the phase-space variables, but rather only on the
macrovariablesr and t [26]. The macroscopic quantities are
related in an average sense to the microscopic quantities
through the relevant density function. The macroscopic dis-
placement and induction fieldsD and B are related to the
macroscopic electric fieldE and magnetic fieldH, M , andP
by

D = e0E + P̃ − ¹ ·QJ ; e0E + P, s1d

B = m0H + m0M , s2d

and

J = fsE,Hd, s3d

where f is a function of the electric and magnetic fields,e0
andm0 are the permittivity and permeability of vacuum, and

QJ is the macroscopic quadrupole moment density.P̃ is the
macroscopic dipole-moment density, whereasP is the effec-
tive macroscopic polarization that includes the macroscopic
quadrupole-moment density contribution that is needed for
origin invariance in Maxwell’s equations[1–3,16,27].

III. LOCAL, MICROSCOPIC, AND MACROSCOPIC
FIELDS IN MATERIALS

In the literature, the effective local field is commonly
modeled by the Lorentz field, which is defined as the field in
a cavity that is carved out of a material around a specific site,
but excludes the field of the observation dipole. A well-
known example of the relationship between the applied,
macroscopic, and local fields is given by an analysis of the
Lorentz spherical cavity in a static electric field. In this ex-
ample, the applied field, depolarization field, and macro-
scopic field are related by

E = Ea −
1

3e0
P. s4d

For a Lorentz sphere the local field is well known to be a
sum of applied, depolarization, Lorentz, and atomic fields
[9,28]:

Ep = Ea + Edepol+ ELorentz+ Eatom. s5d

For cubic lattices in a sphere, the applied field is related to
the macroscopic field and polarization by

Ep = E +
1

3e0
P. s6d

In the case of a sphere, the macroscopic field equals the
applied field. Onsager generalized the Lorentz theory by dis-
tinguishing between the internal field that acts on induced
dipoles and the directing field that acts on permanent dipoles
[11]. Some of the essential problems encountered in micro-
scopic constitutive theory center around the local field. Note
that there has been recent research that indicates that the
Lorentz local field does not always lead to the correct polar-
izabilities in some materials[5].

The field that polarizes a molecule is the local fieldp
<aEp. In order to use this expression in Maxwell’s equa-
tions, the local field needs to be expressed in terms of the
macroscopic fieldEp=bE, whereb is some function. Calcu-
lation of this relationship is not always simple. Since the
local field is related to the macroscopic field, the polarizabil-
ities, permittivity, and permeability absorb parts of the local
field— for example,p<abE. The local field is composed of
the macroscopic field and a material-related field as in Eq.
(6). Part of the local field is contributed by effects of external
parameters such as thermal expansion and quantum effects.
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These additional degrees of freedom are contained in the
internal energy. In Sec. VI we will generalize the local field
to include time-dependent behavior.

IV. POLARIZATION, MAGNETIZATION, AND STRAIN
DENSITY

In this section we will define the microscopic polariza-
tion, magnetization, and strain density. Later we will use
constraints on the theoretical expected values of the polariza-
tion, magnetization, strain density, and internal energy to
build a relevant-density function[4]. This density function is
only part of the full statistical density function that describes
the N-body system completely. Using this formalism, exact

evolution equations are derived forP, M , andEJ. This accom-
plishes an averaging that we feel is more self-consistent than
that used in most statistical-mechanical approaches because
the relevant-density function, being the relevant contribution,
incorporates the exact values of the macroscopic polariza-
tion, magnetization, strain density, and internal energy[1,2].
The relevant-density function provides the required smooth-
ing, and the expected values are determined through
Lagrange multipliers. However, the resultant equations are
highly nonlinear. The Lagrange multipliers are functions of
the macroscopic polarization, magnetization, and internal-
energy density, but not the phase-space variables.

In the approach of Mazur and Nijboer, Robinson, and
Jackson[1–3] the charge density is expanded in a Taylor’s
series and the multipole moments are identified. These mo-
ments are calculated about each molecular center of mass
and are treated as point multipoles. This type of averaging
produces a homogenization to the molecular level. Of course
the homogenization can take place on smaller scales such as
atomic moments. Our approach differs from previous work
in that we use the moments defined at a specific scale to
determine the averaging function and then use this function
to calculate expected values.

Here we construct the relevant statistical-density function
from microscopic multipoles, which are incorporated in the
Robertson projection-operator model. It has been shown that
for origin invariance in Maxwell’s equations it is necessary
to include a quadrupole contribution in addition to the elec-
tric dipole moment in the constitutive relationship for the
displacement field, whereas only the magnetic dipole mo-
ment needs to be included in the constitutive relationship for
the induction field. Since molecular and atomic moments are
measurable quantities, we utilize the commonly used defini-
tion for the effective microscopic dipole moment[3]. With
this averaging the phase-space variables become the molecu-
lar centers of mass. The dipole and quadrupole moments are

pdn = o
jsnd

r jnej , s7d

qJn =
1

2o
ksnd

ekr knr kn. s8d

However, the theory developed in this paper is not limited to
homogenization at the molecular level and a more micro-

scopic approach could be used by decomposing the molecule
moments[14]. The vectorsr jn=r j −r n are from the center of
mass of the moleculer n to the j th charge. Higher-order mo-
ments are defined in a similar fashion as in Jackson[3]. The
n indicates thenth molecule andjsnd indicates thej th charge
in the nth molecule at the center of massr n of the nth mol-
ecule. The sum in Eq.(7) is over the bound charge. The free
charge need not be neutral as a whole and contributes to the
kinetic energy contained in the internal energy. The total di-
pole moment is calculated by integrating Eq.(7) over space.
The sign of the chargeej is, for example, negative for elec-
trons and positive for protons. The effective(with quadru-
pole contribution) microscopic polarization is[3]

p = o
n

pdndsr − r nd − = ·qJ, s9d

where

qJ = o
n

qJndsr − r nd. s10d

Note that the polarization is not represented as an explicit
function of the electric field. This dependence enters through
the expectations with the relevant statistical function and
Liouville’s equation. If higher-order moments need to be in-
cluded, then these moments can be inserted as additional
constraints. In the approach used in this paper we do not
expand the charge density using a distribution function, but
rather use the moments to determine the distribution function
(or relevant density function). The existence of the multipole
moments automatically assumes a degree of averaging. The
expected value of the polarization isP;kpl=Trsprd, where
r is the full statistical-density function(operator) that satis-
fies Liouville’s equation. In a classical analysis the trace is
defined as an integration over phase-space variables. In clas-
sical mechanics the dynamical state is specified by the phase
coordinatesr i and momentapW i for each degree of freedom.
This dependence for all particles is denoted by the variable
G.

The macroscopic applied electric and magnetic fieldsEa,
Ha are functions of onlyr and t and not functions of the
phase-space coordinates.

Most of the analysis in this paper is performed classically;
however, it could easily be performed, with minor modifica-
tions, as a quantum-mechanical analysis where the Poisson
brackets are replaced with commutators and the expectations
become traces of operators. The definition of the classical
trace is

Trsd =E sddr 1¯dr NdpW 1¯dpW N ;E sddG, s11d

and the expected value is written as

kFl = TrsFrd. s12d

The molecular dipole magnetic moment of thenth molecule,
mdn, can be written in terms of intrinsic magnetic-spin mo-
mentsmdIn and any other contribution due to charge motion
of the form sej /2Mjdr jn3pW jn. The spin gyromagnetic ratios
are defined bygI j =gjej /2Mj, with g<2 for an electron. The
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canonical momentum of thej th charge in moleculen relative
to the center of mass ispW jn=Mj ṙ jn+ejasr jd, whereasr jd is
the microscopic vector potential. In addition to molecular
moments there may also be moments due to domains and
eddy currents. The total microscopic magnetization is then
the sum over magnetic moments of the molecules times ad
function:

msr d = o
n

mdndsr − r nd. s13d

M sr ,td;kml;Trfmrstdg. Higher magnetic moments could
also be included.

In addition to the polarization and magnetization, we will
assume that the specimen is acted on by a strain-density ten-
sor «Ji j ssdsr d.

Modeling of induced electric moments requires a knowl-
edge of the positions of all the charge in the molecules and
therefore a finer level of homogenization. Modeling of per-
manent electric dipoles requires only knowledge of the coor-
dinates of the dipole and therefore the expectation calcula-
tions simplify.

V. EVOLUTION EQUATIONS FOR POLARIZATION,
MAGNETIZATION, AND STRAIN DENSITY

A. Relevant density function

The goal of this section is to develop the relevant-density
function and expressions for the time evolution of the polar-
ization, magnetization, and strain density[14,29]. The analy-
sis is semiclassical and in the equations of motion we use
Poisson brackets between position and momentum variables,
and also include intrinsic angular momentum.

We consider the system to be dynamically driven by ap-
plied electromagnetic fields and thermally isolated from the
surroundings. We assume that the currents and charge creat-
ing the applied fields are external to the system. In this sec-
tion we define the Hamiltonian, introduce the information
entropy, and then derive expressions for the macroscopic po-
larization, magnetization, strain density, and internal-energy
density. These expressions will be used in the next section
for derivation of evolution equations.

The Hamiltonian contains the interaction of the applied
electric field with the electric polarization, the interaction of
the applied magnetic field with the magnetization, the inter-
action of the applied stress interaction with the strain density,
and the internal-energy density. The internal-energy density
U includes the potential-energy density[oirtsidfsr id and
kinetic-energy density of the lattice in the unperturbed
Hamiltonian H0, plus dipole-dipole interactions, exchange
interactions, magnetic anisotropy, and other interactions]:

Hstd =E d3rHUsr ,Gd − psr ,Gd ·Easr ,td

− m0msr ,Gd ·Hasr ,td −
1

2
«Jssr ,Gd:SJasr ,tdJ . s14d

Note that , : , denotes tensor contraction. The microscopic
quantitiesp, m, «Js, andU are functions ofr and positions

and momenta of all the particles, but have no explicit time
dependence. The time dependence enters through the dynam-
ics, after taking the expectation. The Hamiltonian is time
dependent through the applied fields. If the closed system is
in contact with a heat reservoir, this term must also be in-
cluded in the internal-energy density.

The kinetic energy and angular momentum-related terms
in the internal energy do not commute with the polarization
and therefore, when calculating the time evolution, will con-
tribute when calculating the Poisson bracket(commutator)
fp ,Ug. We use the symbolsf,g for either classical-mechanical
Poisson brackets or quantum-mechanical commutators. The
magnetizationm and the magnetic dipole-dipole interaction
do not commute withm and therefore will contribute to
fm ,Ug. The polarizationp and «J do commute with them-
selves, whereasm does not. In addition tor, the Robertson
projection operator, statistical-mechanical theory uses a
relevant-density functions that does not satisfy Liouville’s
equation, but an exact relationship can be constructed in
terms ofr, s, and a projectionlike operator[4]. s character-
izes the local state at any time in terms of Lagrange multi-
pliers that are functions of the macroscopic electromagnetic
and thermodynamic quantities. The basis of the Robertson
projection-operator method involves the separation of the
relevant-variable contributions from the relaxation and dissi-
pative terms. The reader is referred to Robertson’s papers for
further details of the method[4,30] and other papers[14,31].
In this formalism the statistical-density function(operator) r
is related to the relevant-density functions by

rstd = sstd −E
0

t

dtTst,tdh1 − PstdjiLstdsstd, s15d

whereL is Liouville’s operator, which in a classical analysis
satisfiesiLA=−fH ,Ag and quantum-mechanical analysis sat-
isfies iLA= ifH ,Ag /". Note, for a quantum mechanical
analysisi /" must be included in all[H ,A] brackets in this
paper. Also,P is a non-Hermitian projectionlike operator[4]
defined by the functional derivative

PstdA ; o
n=1

m E d3r
dsstd
dkFnl

TrsFnAd, s16d

for any quantum-mechanical operatorA and, as a conse-
quence, ]s /]t=P]r /]t. The integrating factor operator
Tst ,td satisfies the initial-value problem

] Tst,td
] t

= Tst,tdh1 − PstdjiL, s17d

with initial condition Tst ,td=1. In the limit of linear re-
sponse,T reduces tofexpsist−tdL0dg, whereL0 is the ap-
proximate Liouville’s operator, as in the Kubo theory, corre-
sponding to an equilibrium Hamiltonian. All of the operators
T, P, andL are linear. The statistical-density function in Eq.
(15) is given by a reversible-density term plus an irreversible
term.

The relevant-density functions is constructed through
theoretical constraints on the polarization, magnetization,
strain density, and internal-energy density by maximizing the
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information entropy for each timet. The entropy is defined
as

Sstd = − kTrfsstdln sstdg, s18d

where k is Boltzmann’s constant. Maximizing this entropy
subject to constraints on the multipole moments and internal
energy yields the most probable relevant density function
that describes the statistical particle interactions forming the
macroscopic electromagnetic behavior. The entropy is maxi-
mized subject to constraints on the expected values of the
relevant variablesF j, which are the macroscopic variables

M , P, U, andEJs:

kFisr ,tdl =
1

Z
TrFFisr dexpS−E d3r 8o

j

l jsr 8,tdl j ·F jsr 8dDG .

s19d

Higher-order multipoles could also be included. This equa-
tion is a relationship between the relevant macroscopic vari-
ables and the Lagrange multiplier fields. The partition func-
tion is

Z = TrXexpF−E d3r 8Hbsr 8,tdSUsr 8d − m0msr 8d ·Hmsr 8,td

− psr 8d ·Epsr 8,td −
1

2
«Jssr 8d:SJ«sr 8,tdDJGC , s20d

where the Lagrangian multipliers are related to the inverse
temperaturebsr ,td=1/kTsr ,td (wherek is Boltzmann’s con-
stant), normalized electromagnetic fields −bsr ,tdEpsr ,td,
−bsr ,tdm0Hmsr ,td, and stress fields −bSJ« /2. These Lagrang-
ian multiplier fields interact with the microscopic polariza-
tion p, magnetizationm, and strain density«Js. Ea andHa are
applied fields, whereasEp and Hm are effective local fields
that interact withp and m. These constraints are incorpo-
rated into the entropy expression by use of Lagrange multi-
pliers, and the resulting variational expression is maximized
to obtain the relevant-density function

sstd =
1

Z
expF−E d3r 8Hbsr 8,tdSUsr 8d − m0msr 8d ·Hmsr 8,td

− psr 8d ·Epsr 8,td −
1

2
«Jssr 8d:SJ«sr 8,tdDJG . s21d

The initial condition issst=0d=rst=0d [4,32]. Sinces is a
relevant, local-equilibrium density function, all expectations
taken with respect to relevant variables are called reversible.

To summarize, we have expressed the expected values of
the magnetization, polarization, strain-density, and internal-
energy density as functions of Lagrange multipliers. The
relevant-density functions is a function of the Lagrange
multipliers and characterizes the local-equilibrium state. In
order to determine these quantities, evolution equations are
required. The evolution equations will be developed in the
next section. The statistical density function is expressed in
terms of the relevant statistical-density function(operator).
In this respect the resulting evolution equations are exact.

Example: the density function and calculation of the po-

larization.As a simple example, we consider a collection of
charges in az-directed electric field. We neglect the internal
energy. The microscopic polarization is defined asp
=onpdndsr −r nd, the Lagrange multiplier isl1=−Epez/kT.
We consider only expectation of a single dipole moment. The
relevant density function is

s =
1

Z
expSo

n

pd ·Ep/kTD . s22d

The macroscopic dipole moment ofpdsz1d is

Pdsz1d =E dGpdsz1dssGd=
2p

Z
E

0

p

dupdsz1dsin u cosu

3expSoi
pdszidEpsr idcosu

kT
Dez s23d

<
pdsz1d

2 Epsr1d

3kT
ez, s24d

where the the last term in Eq.(24) is a high-temperature
approximation.edG denotes integration over phase variables.
The partition function is

Z =E dG expSoi
pdszid ·Epsr id

kT
D

=2pE sin u expSoi
pdszidEpsr idcosu

kT
Ddu. s25d

The result given in Eq.(24) is the same as obtained by
rotational-diffusion approaches. Equation(24) could be used
to determine the effective local fieldEp.

B. Equations of motion for P, M, and «J

Using the Robertson formalism, equations of motion for
the relevant variables can be developed(see Appendix A). In
this paper, we give only the results of the equations of mo-
tion and refer the reader to previous work for details[14].
For each of the constraint variables we have

] kFmsr ,tdl
] t

= − TrsfH,Fmgsd

− o
i
E d3r 8E

0

t

Tr„fHstd,Fmsr dg

3Tst,tds1 − PsG,tddfDHisr 8,td,sstdg…dt.

s26d

In Eq. (26), F1=m, F2=p, F3=«J, DH1=−m0m ·sHa−Hmd,
DH2=−p ·sEa−Emd, andDH3=−1

2«J: sSJa−SJ«d (see Appendix
B). The magnetic reversible term is TrsfH ,mgsd
=−m0gef fM sr ,td3 fHasr ,td−Hmsr ,tdg−Trsfm0m ,p ·sEa

−Epdgsd−Trhfm0m , 1
2EJa: sSJa−SJ«dgsj, where gef f is an ef-

fective gyromagnetic ratio. The other reversible terms can be
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calculated by evaluating the Poisson brackets or commuta-
tors of the relevant variables with the Hamiltonian. Note that
the termfU ,sg in the above has been eliminated in terms of

the effective local fieldsHm, Ep, SJ« (see Appendix B). The
projection operator in the relaxation term subtracts flux and
assures proper behavior of the correlation functions at large
times. The cross-coupled terms in Eq.(26) reduce to 0 when
there is no correlation between the magnetization, polariza-
tion, and strain density. We note that the macroscopic fields
do not occur explicitly in Eq.(26). A relationship will later

be derived between the applied fieldsEa, Ha, SJa, effective

local fieldsEp, Hm, SJ«, and the macroscopic fieldsE, H, SJE.

C. Approximations to the Poisson brackets

The evolution equations are relatively complicated, and
for further analysis simplifications are needed. Fortunately,
the forms of these equations do lend themselves to simplifi-
cation. We note that the commutators in the evolution equa-
tion are material-related quantities. These commutators can
be approximated. For example, the polarization-current den-
sity, neglecting strain behavior, is

j ps1d ; − fH,psr dg

< − fu,pg − Fp,m0E m ·Had
3rG

< o
i

rpsid

Mi
pW i − Fp,m0E m ·Had

3rG , s27d

whereu is the internal energy andpW is the particle momen-
tum. Also, using the knowledge thatp does not depend on
momenta and the definition of the Poisson bracketsfp ,sg
=oiks]p /]r ikds]s /]pikd we have

fpsr d,sg < bfu,pgs + bFp,m0E m ·Hmd3rGs

< − bo
i

rpsid

Mi
pW is + bo

i

vW im 3 pis, s28d

where we used= ·p=−rp, the kinetic energy in the internal
energy, assumedb is constant, andvW im is an effective angu-
lar velocity. The first term on the right-hand side(RHS) of
Eq. (28) is a current due to linear bound-charge(dipole)
transport and the second term is due to charge rotation.

The magnetic-current density also contains a linear cur-
rent due to spin transport, plus a precession contribution

j ms1d ; − fH,msr dg

< − fu,mg − Fm,m0E m ·Had
3rG

= o
i

rdsid

Mi
pW i − m0geE m 3 Had

3r s29d

and

fm0msr d,sg < bfu,m0mgs + bFm0m,m0E m ·Hmd3rGs

< − o
i

bm0

rdsid

Mi
pW is + bm0

2geE m 3 Hmd3rs,

s30d

whererd is the effective magnetization-charge density satis-
fying = ·m<−rd. Note that the first current term in each of
these expressions contains linear velocities and the second
contains rotational motion. The correlation between the rota-
tional parts in the magnetic-current density yields spin
waves, and the nonrotational is related to spin transport and
magnon-electron interactions[33–35]. Finally, the strain-
current densities are defined by the relations

jJ«s1dsr d = − fH,EJsr dg. s31d

D. Approximations to the local and macroscopic fields

In order to obtain approximations to the local fieldsEp,
Hm in terms of the macroscopic fields we can expand Eq.
(19) to first order:

Epsr ,td < xJ 0pp
−1 Psr ,td + LJp ·Psr ,td, s32d

Hmsr ,td < xJ0mm
−1 M sr ,td + LJm ·M sr ,td, s33d

and

SJ«sr ,td < xJ 0««
−1 :EJsr ,td + LJs:EJsr ,td, s34d

where LJp, LJm, and LJs are dielectric, magnetic, and strain
depolarization tensors[14] and xJ0ee, xJ0mm, andxJ0«« are the
static susceptibilities.

In materials the macroscopic fields differ from the applied
fields in that they contain the effects of surface-
depolarization charge that modify the applied field. For ex-
ample, the macroscopic electric field is approximated as

Esr ,td=Easr ,td−LJp·Psr ,td. This same form holds for the
magnetic and stress fields.

In a first-order linear approximation, the constitutive rela-
tions can be obtained from Eq.(19):

P < xeeEp + xemHm + xWes· SJ« + xWeusT − T0d s35d

where the terms correspond, respectively, to dielectric relax-
ation, magnetoelectricity, piezoelectricity, and pyroelectric-
ity,

M < xmeEp + xmmHm + xWms· SJ« + xWmusT − T0d, s36d

where the terms correspond respectively to magnetoelectric-
ity, magnetic relaxation, piezomagnetic, and pyromagnetic-
ity, and

EJ < xJse·Ep + xJsm·Hm + xJss:SJ« + xJsusT − T0d, s37d

where the terms correspond respectively to piezoelectricity,
piezomagnetic, strain relaxation, and thermal expansion.
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Example: the Lorentz local field. As a check on the inter-
pretation ofEp as a local field, we consider Eq.(32) for the
case of a cavity in a dielectric. For an ellipsoid, the depolar-
ization factor is Lp=sers2d−ers1dd /ers1dsers2d−1d. Therefore,
for a sphere the local field reduces to the Lorentz local field

Epsr ,td < xJ 0pp
−1 Psr ,td + LJp ·Psr ,td = E +

P

3e0
. s38d

E. Simplified expressions for the evolution equations

Since the equations are exact, the constitutive evolution
equations can be very complicated and in actual applications
simplifications need to be applied. In this section we apply
our approximations and drop the cross-coupling terms in the
equations of motion in Eq.(26). In this section the absolute
value ofe is used ing. Using the approximations developed
in the previous sections for the magnetization, with no cross
coupling, we have

s39d

Note that for electronsgef f is negative. In a linear approxi-
mation, when the time dependence is in the form of a con-
volution, the magnetic susceptibility tensor can be identified
as

xJmsk,vd = f1 + ivKJ m
−1sk,vdg−1xJ0mm, s40d

where the frequency dependence denotes the Fourier trans-

form and KJm
−1sk ,vd is the relaxation-time tensor. Equation

(40) yields an interpretation of the relaxation-time kernel as a
distribution of relaxation times.

F. Bloch-Bloembergen

In the special case of ad-function response in Eq.(39),
with KJm=KJ0mmdst−tddsr −r 8d /tm, we have a variant of the
Bloch-Bloembergen equation:

] M sr ,td
] t

< m0gef fM sr ,td 3 Hsr ,td − fM sr ,td

− xJ0mm·Hsr ,tdg/tm. s41d

Landau-Lifshitz equation

In the special case where the kernel in Eq.(39) is

KJmsr ,t,r 8,td =
m0ag

uM u
hM sr ,td 3 fM sr ,td 3 Hsr ,tdgjhM sr 8,td 3 fM sr 8,td 3 Hsr 8,tdgj

fM sr ,td 3 Hsr ,tdg · fM sr 8,td 3 Hsr 8,tdg
dst − tddsr − r 8d, s42d

we recover the Landau-Lifshiftz equation

] M sr ,td
] t

< m0gM sr ,td 3 Hsr ,td −
m0ag

uM u
M sr ,td 3 fM sr ,td

3 Hsr ,tdg. s43d

The approximation for the polarization rate is

] Psr ,td
] t

= − TrsfH,pgsd −E d3r 8E
0

t

Trhbj ps1dsr ,tdTst,tdf1

− PsG,tdgfpsr 8d,sstdgj · xJ 0ee
−1 · fPsr 8,td

− xJ0ee·Esr 8,tdgdt. s44d

This equation is a generalization of the Debye equation of
motion, and for linear response the Fourier transform can be
used to obtain the polarization in terms of the macroscopic
field. In a linear approximation, the electric susceptibility
tensor is
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xJesk,vd = f1 + ivKJe
−1sk,vdg−1xJ0ee. s45d

Debye response occurs when the relaxation-time tensor
xJ e

−1sk ,vd is a constantt0. The strain-density rate without
cross-coupling satisfies

] EJsr ,td
] t

= − TrsfH,EJgsd−E d3r 8E
0

t

Trhb jJ«s1dTst,tdf1 − Pstdg

3f«Jssr 8d,sstdgj · xJ 0««
−1 · fEJsr 8,td

− xJ0««:SJEsr 8,tdgdt. s46d

In a linear approximation, the strain-stress tensor susceptibil-
ity is

xJ«sk,vd = f1 + iv KJ«
−1sk,vdg−1 · xJ0««. s47d

In the projection-operator method that forms the basis of
our work, the calculation and simplification of the projection
and evolution operators are complicated; however, Nettleton
[31] has studied methods for simplifications of the correla-
tion functions that occur in the Robertson theory.

VI. LOCAL FIELDS

We still need to express the local fields in terms of the
macroscopic fields. We can extract the relationship between
the macroscopic, local, and applied fields multiplying Eq.
(15) by the microscopic field and taking the trace and by
requiring the expected value of the respective microscopic
electric and magnetic fieldse andh to be the effective local
fields Ep andHm. With this assumption we have

Trserd ; Epsr ,td

= Trsesd +E d3r8E
0

t

dtTrhesr dTst,tdh1 − Pstdj

3fH,sstdgj

=E −E d3r8E
0

t

dtTr„besr dTst,tdh1 − Pstdj

3fpsr 8d,sg… · fEasr 8,td − Epsr 8,tdg

−E d3r8E
0

t

dtTr„besr dTst,tdh1 − Pstdj

3fm0msr 8d,sg… · fHasr8,td − Hmsr8,tdg

−E d3r8E
0

t

dtTr„besr dTst,tdh1 − Pstdj

3f«Jssr 8d,sgd:fSJasr 8,td − SJ«sr 8,tdg, s48d

and

Trshrd ; Hmsr ,td

= Trshsd +E d3r8E
0

t

dtTrhhsr dTst,tdh1 − Pstdj

3fH,sgj

=H −E d3r8E
0

t

dtTr„bhsr dTst,tdh1 − Pstdj

3fm0msr 8d,sg… · fHasr 8,td − Hmsr 8,tdg

−E d3r8E
0

t

dtTr„bhsr dTst,tdh1 − Pstdj

3fpsr 8d,sg… · fEasr 8,td − Epsr 8,tdg

−E d3r8E
0

t

dtTr„bhsr dTst,tdh1 − Pstdj

3f«Jssr 8d,sg…:fSJasr 8,td − SJ«sr 8,tdg. s49d

A similar equation holds for the strain fields. Equations(48)
and (49) define the relationship between the microscopic,
local, applied, and macroscopic fields.

We have defined the macroscopic fields as the expectation
of the microscopic field with respect to the relevant statistical
density functions:

Esr ,td = Trfesr dsg, s50d

Hsr ,td = Trfhsr dsg, s51d

SJEsr ,td = TrfSJsr dsg. s52d

In addition, the macroscopic charge density is defined in
terms of the microscopic charge density askrtl=Trsrtsd.

These definitions of the macroscopic fields in Eqs.
(50)–(52) make sense becauses is the density function for
the relevant variables such that the expectation taken with
the microscopic relevant variables is required to match the

macroscopic variablesP, M , EJ, andU. ThereforeE, H, and

SJE are the relevant macroscopic fields. Equations(48), (49),
and(19) are coupled equations forE, H, SJE, Ep, Hm, andSJ«.
Equations(48) and (49) serve as the definitions ofE andH
and also show how the Lagrange multipliersEp andHm are
related to the microscopic fields. The relaxation terms in Eqs.
(48) and(49) are correlation functions between the field atr
and the time-rate of change of the relevant-density function.

Equation (50) can be compared to the most commonly
used way to construct the macroscopic field from the micro-
scopic field. In this commonly used approach, a distribution
function fdsr d is postulated according to the length scale and
wavelength of interest, where

E =E dr 8esr − r 8dfdsr 8d. s53d

However, the distribution functionfd is seldom explicitly
needed or determined in the analysis. In general, this distri-
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bution function must depend on the material properties since
it is the constitutive relations that determinef. In our ap-
proach the averaging function is explicitly constructed in
terms of the polarization, magnetization, strain density, and
internal-energy density in a self-consistent fashion.

These definitions of the local fields in Eqs.(48) and (49)
are exact generalizations of the Lorentz expression, Eq.(6),
and that given by Robinson[2]. We can approximate these
expressions for the local field:

Epsr ,td < Esr ,td+E d3r8E
0

t

Tr„besr dTst,tdh1 − Pstdj

3fpsr8d,sstdg… · xJ 0pp
−1 · fPsr 8,td

− xJ0pp ·Esr 8,tdgdt, s54d

Hmsr ,td < Hsr ,td+E d3r8E
0

t

Tr„bhsr dTst,tdh1 − Pstdj

3fm0msr 8d,sstdg… · xJ 0mm
−1 · fM sr 8,td

− xJ0mm·Hsr 8,tdgdt, s55d

and

SJ«sr ,td < SJEsr ,td+E d3r8E
0

t

Tr„bSJsr dTst,tdh1 − Pstdj

3fsstd,«Jssr 8dg…:xJ 0««
−1 :fEJsr 8,td

− xJ0««:SJEsr 8,tdgdt. s56d

VII. DISPLACEMENT AND INDUCTION FIELDS

We now want to define the displacement vector on a
nearly microscopic level. For time-dependent fields in mate-
rials, only the part of the microscopic electric field in Eq.
(50) contributes tod as in Eq.(50). As noted by Jackson[3],
at a truly microscopic level it makes little sense to define the
displacement field since it is a byproduct of the averaging
used. We define the displacement field(operator) as dsr d
=e0Trsesd+e0fesr d−Trserdg+psr d. The macroscopic dis-
placement vector is defined as

Dsr ,td = kdrl = e0Trsesd + Trsprd = e0E + Trspsd = e0Esr ,td

+ Psr ,td. s57d

Since the polarizationP may depend on the magnetic field, it
is possible thatD can depend on the magnetic field. The
definition of the macroscopic free-charge density is

= ·Dsr ,td = = · Trfdsr drg = TrSo
i

eidsr − r idsD = Trsrtsd,

s58d

wherert is the microscopic total-charge density.
Similarly the microscopic magnetic induction field is de-

fined, in terms of the microscopic field and the magnetic
moments m, to be bsr d=m0Trshsd+m0fhsr d−Trshrdg
+m0msr d. Therefore the macroscopic induction field is

Bsr ,td = m0H + m0Trsmsd = m0Hsr ,td + m0M sr ,td.

s59d

The induction field satisfies

= ·Bsr ,td = ¹ · Trfbsr drg = 0. s60d

We use these results when we derive Maxwell’s equations
from first principles(see Appendix D) from Liouville’s equa-
tion.

VIII. CONCLUSION

In this paper we studied the local and macroscopic fields
and the constitutive relationships as functions of the micro-
scopic and applied fields. We developed expressions for the
local electric, magnetic, and strain-density fields in terms of
the macroscopic and applied fields using a projection-
operator, statistical-mechanical theory that is valid to the
submolecular level. The macroscopic fields are defined as the
expectation of the microscopic fields with respect to the
relevant-density function and the local fields are defined as
the expectation of the microscopic fields with respect to the
full statistical-density function. This theory incorporates a
self-consistent averaging procedure for obtaining the macro-
scopic polarization, magnetization, and strain density from
the microscopic quantities, which is valid at all length scales.
The constitutive relationships are expressed in terms of the
macroscopic fields, derived from first principles, and include
effects of the temperature, strain, and internal-energy density
interactions. Our method deviates from the methods devel-
oped by Mazur and Nijoboer, Robinson, and Jackson in that
we construct the averaging function by using constraints on
the polarization, magnetization, internal-energy density, and
strain density[see Eq.(19)]. In the inverse problem the rel-
evant distribution function is used for averaging of the mi-
croscopic fields. These equations plus evolution constitutive
equations in Eq.(26) determine the Lagrange multipliers and
macroscopic polarization, magnetization, internal-energy
density, and strain density.

The local field is composed of the macroscopic field and a
material-related field. Part of the local field may be due to
effects of external parameters such as temperature and quan-
tum effects. The internal and free energies affect the electro-
magnetic behavior. For example, the temperature, exchange,
and anisotropy interactions all influence the dipole orienta-
tions and therefore the fields. Usually these internal-energy
effects are modeled by an effective field.

The correlation functions are expressed in terms of
current-current correlations, phonon-phonon interactions,
phonon-magnon interactions, and magnon-magnon interac-
tions. Application of the derived theory yields extensions of
the Debye and Landau-Lifshitz equations. In the Appendixes
we also show how Maxwell’s equations evolve naturally out
of the projection-operator formalism and define a nonequi-
librium entropy for time-dependent electromagnetic re-
sponse.

APPENDIX A: EQUATION OF MOTION

Using this formalism an equation of motion has been de-
veloped[4]
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] kFml
] t

= kiLFmlt−E
0

t

TrhfH,FmgTs1 − PdfH,sstdgjdt,

sA1d

where classicallykiLFml=−TrsfH ,Fmgsd or quantum me-
chanically kiLFl=si /"dTrsfH ,Fgsd. The first term on the
right side of Eq.(A1) is the reversible or convection term;
the second is the relaxation term. Equation(A1) is exact and
has been used for other applications[30].

APPENDIX B: SIMPLIFICATION

We can eliminate the effects of the internal energyu in the
current term in Eq.(26) using the following argument:

Fbu − o
i=1

N

li ·Fi,sG = 0 =bfu,sg − o
i=1

N

fli ·Fi,sg.

sB1d

Therefore,

bfu,sg = Fo
i=1

N

li ·Fi,sG . sB2d

APPENDIX C: ENTROPY IN TIME-DEPENDENT
ELECTROMAGNETISM

The Hamiltonian is time dependent because the applied
fields are time dependent. Since we are considering a closed
system, it is thermally insulated from its surroundings. How-
ever, heat may be generated by dissipative interactions of the
fields with the dipole moments, producing thermal energy
from the electromagnetic fieldDQ/sec=eJ ·EdV. The net
work related to the field change fromH to Ha is contained in
the dipole-dipole internal energy and changes in kinetic en-
ergy. If the applied field is turned off, no more work is per-
formed on the system, and the temperature and fields will
adjust to a state of maximum entropy as it approaches a
thermodynamic equilibrium, with a time-independent Hamil-
tonian. The entropy changedS=dQ/T is due to the system
going from a nonequilibrium state to the equilibrium state,
and in the processDSù0.

We can calculate the nonequilibrium entropy for the
whole system from Eq.(18):

Sstd = − kTrfsstdln sstdg=E d3r
1

T
FUsr ,td − Psr ,td ·Epsr ,td

− m0M sr ,td ·Hmsr ,td −
1

2
EJsr ,td:SJ«sr ,tdG + k ln Z.

sC1d

The last term is related to the free energyF=−kT ln Z.
The time rate of change of entropy of the system that is

driven electromagnetically is

dSstd
dt

= − kTrSdsstd
dt

ln sstdD
=E d3r

1

T
H ] U

] t
−

] Prelax

] t
·Ea − m0

] M relax

] t
·Ha

−
1

2

] EJ
] t

:SJaJ
=E d3r

1

T
H ] Psr ,tdrelax

] t
· fEpsr ,td − Easr ,tdg

+ m0
] M sr ,tdrelax

] t
· fHpsr ,td − Hasr ,tdg

+
1

2

] EJ
] t

:sSJ« − SJadJ
<E d3r

1

T
H ] Dsr ,td

] t
·Esr ,td +

] Bsr ,td
] t

·Hsr ,td

−
1

2

]

] t
se0uEu2 + m0uH u2d +

1

2

] EJ
] t

:SJaJ . sC2d

The subscript(relax) indicates that only the relaxation part of
Eq. (26) is used. The RHS of Eq.(C2) is the entropy pro-
duction [36,37]. The reversible terms do not contribute di-
rectly to the entropy rate because TrsiLsd=0. Zimmels[38]
has noted that when calculating the entropy in an electro-
magnetic system, the entropy without the system in place
must be subtracted when usingD and B as field variables.
Equation(C2) manifests this in the subtracted terms. The last
equality in Eq.(C2) shows that the entropy production is the
difference between the entropy rates with and without the
system in place. We have used the fact that in vacuum there
is no stress or strain.

In the equilibrium limit, in terms of the macroscopic fields
[38],

TdS=E sdUM − E ·dD − H ·dBddV, sC3d

where dS denotes only changes in the nonelectromagnetic
entropy andUM is the total Maxwell internal-energy density.

In equilibrium, the static electromagnetic entropy is

Sem= − S ] Uem

] T
D

V,E,B
+ Semsad

= −E SE ] E

] T
·dD +E ] H

] T
·dBDdV8+ Semsad

= −E SE ] E

] T
·dP + m0E ] H

] T
·dMDdV8, sC4d

where we used the approximations to the macroscopic fields.
Semsad is the electromagnetic entropy in the absence of the
system, andV8 is the total volume where the fields are influ-
enced by the presence of the system, as determined from
solution of Maxwell’s equations. For linear response with no
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temperature dependence in the fields,]E /]T=
−s]xe/]TdD /«2, ]H /]T=−s]xm/]TdB /m2.

APPENDIX D: MAXWELL’S EQUATIONS DERIVED
FROM THE FORMALISM

Consider a dielectric-magnetic material immersed in elec-
tric and magnetic fields. The applied macroscopic fields are
turned on att=0 and drive the nonequilibrium process. In a
finite time after a field is applied, relaxation occurs in the
material and modifies the molecular-interaction fields in the
material. The goal is to derive Maxwell’s equations by con-
sideration of the microscopic electromagnetic quantities and
the system Hamiltonian. We assume there are both free as
well as bound charges in the material.

The microscopic displacement field is defined in terms of
the microscopic polarization by Eq.(57). The macroscopic
induction field isB=Trfbsr drg=m0Hsr ,td+m0M . The mac-
roscopic displacement field isD=Trfdsr drg=e0Esr ,td+P.
Of courseP andM can each be functions of bothE andH.

The Hamiltonian for the system will now be expressed in
terms of the macroscopic fields instead of the applied fields.
This is accomplished by substituting for the applied field in
Eq. (14) in terms of the macroscopic field plus the correc-
tions due to surface depolarization and demagnetization. This
is equivalent to subtracting the depolarization and demagne-
tization potential energy from the internal energy in Eq.(14).
The Hamiltonian is

Hsr d =E sUM − d ·E − b ·Hdd3r , sD1d

where the Maxwell internal-energy densityUM is a sum of
the energy densities due to the material and the fields.UM
depends on the canonical momentum through the kinetic en-
ergy. Now we wish to obtain Maxwell’s equations from Li-
ouville’s equation

] rstd
] t

= fHstd,rg. sD2d

Using Eq.(D2), and taking the expectation ofd and b we
find

TrSd
] r

] t
D =

] D

] t
= TrsdfH,rgd, sD3d

TrSb
] r

] t
D =

] B

] t
= TrsbfH,rgd. sD4d

There are two ways to obtain the curl terms in Maxwell’s
equations. The quantum-mechanical approach is to assume
the microscopic field components obey the commutation re-
lations for quantized fields. The classical Poisson-bracket ap-
proach in materials for obtaining the curl equation is to write
the microscopic induction field asb= = 3a (whereea is the
field momentum of a charged particle), B= = 3Trfasr drg
and use of vector identities, the definition of the divergence
of the microscopic displacement vector, and Poisson brackets
to obtain the curl expressions in Maxwell’s equations. With
either approach,

Trsfb ·H,dgrd = = 3 H sD5d

and

Trsfd ·E,bgrd = − = 3 E. sD6d

The current density is related to the kinetic energy of the
free charge[39]. We define the current density asJsr ,td
=Trsfd ,uMgrd<Trsfd ,Tgrd, whereT, the kinetic energy of
the free charge expressed in terms of the canonical momen-
tum, is

T = o
i

Pi · Pi

2mi
, sD7d

where the canonical momentum isPi =pW isfd−eiai. Through
evaluation of Poisson brackets and from the definition of the
microscopic free charge, the Maxwellian current density is

Jsr d = Trsfd,uMgrd

< o
i

TrfPidsr − r idrg

= o
i

TrfPidsr − r idsg−E d3r 8E
0

t

o
i

Tr„Pidsr − r id

3Tst,tdh1 − Pstdjfpsr 8d,sg… ·Edt

−E d3r 8E
0

t

o
i

Tr„Pidsr − r idTst,tdh1 − Pstdj

3fmsr 8d,sg… ·Hdt, sD8d

where we have used the following vector relationship to sim-
plify the current density

sP · =dd = s= ·ddP − d = · P + sd · =dP − = 3 sd 3 Pd

< s= ·ddP → o
i

eidsr − r idPi . sD9d

Similarly, we use= ·b=0 to show that magnetic free cur-
rent vanishes: Trsfb ,uMgrd=0. Therefore combining the re-
sults we see we have the macroscopic Maxwell’s equations

] D

] t
= = 3 H − J, sD10d

] B

] t
= − = 3 E. sD11d

The time derivative of the Maxwell internal-energy den-
sity UM =TrsUMrd can be calculated from Eqs.(38) and
(D2):

] UMsr ,td
] t

=
] Dsr ,td

] t
·Esr ,td +

] Bsr ,td
] t

·Hsr ,td.

sD12d

This is the same expression that was derived by Landau us-
ing another approach[40]. The relationship of the Maxwell
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internal-energy density to the material internal-energy den-
sity U is

] UM

] t
=

] U
] t

+
1

2
Se0

] uEu2

] t
+ m0

] uH u2

] t
D . sD13d

For linear systems, the integral can be performed to obtain

UM =
1

2
sD ·E + B ·Hd. sD14d

Using Maxwell’s equations we obtain the general equation of
energy conservation

] UM

] t
+ = ·SM = − J ·E, sD15d

where the macroscopic Poynting vector isSM =E3H. Equa-
tions (D12) and (D15) are very general and not limited to
linear dielectrics.
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